मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Two Wires a and B Are Made of Same Material. the Wire a Has a Length L and Diameter Rwhile the Wire B Has a Length 2l and Diameter R/2. - Physics

Advertisements
Advertisements

प्रश्न

Two wires A and B are made of same material. The wire A has a length l and diameter rwhile the wire B has a length 2l and diameter r/2. If the two wires are stretched by the same force, the elongation in A divided by the elongation in B is 

पर्याय

  • 1/8

  • 1/4

  • 4

  • 8

MCQ

उत्तर

\[\text{ Let the Young's modulus of the wire's material be Y .} \]

\[\text{ Here: }\]

\[\text{ Force = F }\]

\[ A_1 = \pi r^2 \]

\[ L_1 = l\]

\[ A_2 = \pi \left( \frac{r}{2} \right)^2 = \frac{\pi r^2}{4}\]

\[ \text{ L }_2 = 2\text{l }\]

\[\text{ Let the elongation in A be x and that in B be y }. \]

\[\text{ Since the Young's modulus for both the wires is the same: } \]

\[Y = \frac{\frac{F}{A_1}}{\frac{x}{l}} = \frac{\frac{F}{A_2}}{\frac{y}{2l}}\]

\[ \Rightarrow \frac{x}{y} = \frac{A_2}{2 A_1}\]

\[ \Rightarrow \frac{x}{y} = \frac{1}{8}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Some Mechanical Properties of Matter - MCQ [पृष्ठ २९८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 14 Some Mechanical Properties of Matter
MCQ | Q 4 | पृष्ठ २९८

संबंधित प्रश्‍न

The figure shows the strain-stress curve for a given material. What are (a) Young’s modulus and (b) approximate yield strength for this material?


The stress-strain graphs for materials A and B are shown in Figure

The graphs are drawn to the same scale.

(a) Which of the materials has the greater Young’s modulus?

(b) Which of the two is the stronger material?


Four identical hollow cylindrical columns of mild steel support a big structure of mass 50,000 kg. The inner and outer radii of each column are 30 cm and 60 cm respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.


A student plots a graph from his reading on the determination of Young modulus of a metal wire but forgets to put the labels. the quantities on X and Y-axes may be respectively


(a) weight hung and length increased
(b) stress applied and length increased
(c) stress applied and strain developed
(d) length increased and the weight hung.


A copper wire of cross-sectional area 0.01 cm2 is under a tension of 20N. Find the decrease in the cross-sectional area. Young modulus of copper = 1.1 × 1011 N m−2 and Poisson ratio = 0.32.

`["Hint" : (Delta"A")/"A"=2(Delta"r")/"r"]`


Young's modulus of a perfectly rigid body is ______.


The temperature of a wire is doubled. The Young’s modulus of elasticity ______.


A rigid bar of mass M is supported symmetrically by three wires each of length l. Those at each end are of copper and the middle one is of iron. The ratio of their diameters, if each is to have the same tension, is equal to ______.


What is the Young’s modulus for a perfect rigid body ?


A steel rod (Y = 2.0 × 1011 Nm–2; and α = 10–50 C–1) of length 1 m and area of cross-section 1 cm2 is heated from 0°C to 200°C, without being allowed to extend or bend. What is the tension produced in the rod?


If the yield strength of steel is 2.5 × 108 Nm–2, what is the maximum weight that can be hung at the lower end of the wire?


A steel rod of length 2l, cross sectional area A and mass M is set rotating in a horizontal plane about an axis passing through the centre. If Y is the Young’s modulus for steel, find the extension in the length of the rod. (Assume the rod is uniform.)


In nature, the failure of structural members usually result from large torque because of twisting or bending rather than due to tensile or compressive strains. This process of structural breakdown is called buckling and in cases of tall cylindrical structures like trees, the torque is caused by its own weight bending the structure. Thus the vertical through the centre of gravity does not fall within the base. The elastic torque caused because of this bending about the central axis of the tree is given by `(Ypir^4)/(4R) . Y` is the Young’s modulus, r is the radius of the trunk and R is the radius of curvature of the bent surface along the height of the tree containing the centre of gravity (the neutral surface). Estimate the critical height of a tree for a given radius of the trunk.


If Y, K and η are the values of Young's modulus, bulk modulus and modulus of rigidity of any material respectively. Choose the correct relation for these parameters.


A metal wire of length L, area of cross section A and Young's modulus Y behaves as a spring of spring constant k given by:


A uniform metal rod of 2 mm2 cross section is heated from 0°C to 20°C. The coefficient of linear expansion of the rod is 12 × 10-6/°C, it's Young's modulus is 1011 N/m2. The energy stored per unit volume of the rod is ______.


If the length of a wire is made double and the radius is halved of its respective values. Then, Young's modules of the material of the wire will ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×