Advertisements
Advertisements
प्रश्न
उस A.P. के प्रथम 51 पदों का योग ज्ञात कीजिए, जिसके दूसरे और तीसरे पद क्रमशः 14 और 18 हैं।
उत्तर
दिया गया है कि,
a2 = 14
a3 = 18
d = a3 − a2
= 18 − 14
= 4
a2 = a + d
14 = a + 4
a = 10
Sn = `n/2[2a + (n - 1)d]`
S51 = `51/2[2 xx 10 + (51 - 1)4]`
= `51/2[20 + (50)(4)]`
= `(51(220))/2`
= 51 × 110
= 5610
APPEARS IN
संबंधित प्रश्न
निम्नलिखित A.P. के लिए प्रथम पद तथा सार्व अंतर लिखिए:
0.6, 1.7, 2.8, 3.9,....
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
-18 | ______ | 10 | 0 |
A.P.: 3, 15, 27, 39, … का कौन-सा पद उसके 54वें पद से 132 अधिक होगा?
तीन अंकों वाली कितनी संख्याएँ 7 से विभाज्य हैं?
किसी A.P. के चौथे और 8वें पदों का योग 24 है तथा छठे और 10वें पदों का योग 44 है। इस A.P. के प्रथम तीन पद ज्ञात कीजिए।
उस A.P. के प्रथम 22 पदों का योग ज्ञात कीजिए, जिसमें d = 7 है और 22वाँ पद 149 है।
किसी AP में, यदि a = 3.5, d = 0 और n = 101 है, तो an बराबर ______ है।
AP: 21, 42, 63, 84,... का कौन-सा पद 210 है?
AP: −3, –7, −11, ... के लिए क्या हम a30 और a20 को वास्तव में बिना ज्ञात किए सीधे a30 – a20 ज्ञात कर सकते हैं? अपने उत्तर के लिए कारण दीजिए।
10 और 300 के बीच में स्थित ऐसी कितनी संख्याएँ हैं, जिनको 4 से भाग देने पर शेषफल 3 रहता है?