मराठी

Use graph paper for this question. (Take 2 cm = 1 unit along both x-axis and y-axis.) Plot the points O(0, 0), A(–4, 4), B(–3, 0) and C(0, –3). Reflect points A and B on the y-axis and name them A - Mathematics

Advertisements
Advertisements

प्रश्न

Use graph paper for this question.

(Take 2 cm = 1 unit along both x-axis and y-axis.)

Plot the points O(0, 0), A(–4, 4), B(–3, 0) and C(0, –3).

  1. Reflect points A and B on the y-axis and name them A' and B' respectively. Write down their co-ordinates.
  2. Name the figure OABCB'A'.
  3. State the line of symmetry of this figure.
आलेख

उत्तर

  1. A' = (4, 4) and B' = (3, 0)
  2. The figure is an arrow head.
  3. The y-axis i.e. x = 0 is the line of symmetry of figure OABCB'A'.

shaalaa.com
Invariant Points.
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Reflection - Exercise 12 (B) [पृष्ठ १७१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 12 Reflection
Exercise 12 (B) | Q 16 | पृष्ठ १७१

संबंधित प्रश्‍न

Points (3, 0) and (–1, 0) are invariant points under reflection in the line L1; points (0, –3) and (0, 1) are invariant points on reflection in line L2.

  1. Name or write equations for the lines L1 and L2.
  2. Write down the images of the points P (3, 4) and Q (–5, –2) on reflection in line L1. Name the images as P’ and Q’ respectively.
  3. Write down the images of P and Q on reflection in L2. Name the images as P” and Q” respectively.
  4. State or describe a single transformation that maps P’ onto P''.

The point (–2, 0) on reflection in a line is mapped to (2, 0) and the point (5, –6) on reflection in the same line is mapped to (–5, –6).

  1. State the name of the mirror line and write its equation.
  2. State the co-ordinates of the image of (–8, –5) in the mirror line.

The points P (4, 1) and Q (–2, 4) are reflected in line y = 3. Find the co-ordinates of P’, the image of P and Q’, the image of Q.


A point P (a, b) is reflected in the x-axis to P’ (2, –3). Write down the values of a and b. P” is the image of P, reflected in the y-axis. Write down the co-ordinates of P”. Find the co-ordinates of P”’, when P is reflected in the line, parallel to y-axis, such that x = 4.


Points A and B have co-ordinates (3, 4) and (0, 2) respectively. Find the image:

  1. A’ of A under reflection in the x-axis.
  2. B’ of B under reflection in the line AA’.
  3. A” of A under reflection in the y-axis.
  4. B” of B under reflection in the line AA”.

The point P (5, 3) was reflected in the origin to get the image P’.

  1. Write down the co-ordinates of P’.
  2. If M is the foot of the perpendicular from P to the x-axis, find the co-ordinates of M.
  3. If N is the foot of the perpendicular from P’ to the x-axis, find the co-ordinates of N.
  4. Name the figure PMP’N.
  5. Find the area of the figure PMP’N.

The point P (3, 4) is reflected to P’ in the x-axis; and O’ is the image of O (the origin) when reflected in the line PP’. Write:

  1. the co-ordinates of P’ and O’.
  2. the length of the segments PP’ and OO’.
  3. the perimeter of the quadrilateral POP’O’.
  4. the geometrical name of the figure POP’O’.

A (1, 1), B (5, 1), C (4, 2) and D (2, 2) are vertices of a quadrilateral. Name the quadrilateral ABCD. A, B, C, and D are reflected in the origin on to A’, B’, C’ and D’ respectively. Locate A’, B’, C’ and D’ on the graph sheet and write their co-ordinates. Are D, A, A’ and D’ collinear?


P and Q have co-ordinates (0, 5) and (–2, 4).

  1. P is invariant when reflected in an axis. Name the axis.
  2. Find the image of Q on reflection in the axis found in (a).
  3. (0, k) on reflection in the origin is invariant. Write the value of k.
  4. Write the co-ordinates of the image of Q, obtained by reflecting it in the origin followed by reflection in x-axis.

A’ and B’ are images of A (-3, 5) and B (-5, 3) respectively on reflection in y-axis. Find: (

a) the co-ordinates of A’ and B’.

(b) Assign special name of quadrilateral AA’B’B.

(c) Are AB’ and BA’ equal in length?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×