मराठी

The points P (4, 1) and Q (–2, 4) are reflected in line y = 3. Find the co-ordinates of P’, the image of P and Q’, the image of Q. - Mathematics

Advertisements
Advertisements

प्रश्न

The points P (4, 1) and Q (–2, 4) are reflected in line y = 3. Find the co-ordinates of P’, the image of P and Q’, the image of Q.

आलेख

उत्तर

Co-ordinates of P and Q are (4, 1) and (–2, 4) respectively.


∴ The co-ordinates of image of P which is P' are (4, 5) reflection in the line y = 3 and co-ordinates of image of Q when is Q' are (–2, 2) reflection is the line y = 3 as shown in the graph.

shaalaa.com
Invariant Points.
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Reflection - Exercise 12 (B) [पृष्ठ १७०]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 12 Reflection
Exercise 12 (B) | Q 5 | पृष्ठ १७०

संबंधित प्रश्‍न

Attempt this question on graph paper.

  1. Plot A (3, 2) and B (5, 4) on graph paper. Take 2 cm = 1 unit on both the axes.
  2. Reflect A and B in the x-axis to A’ and B’ respectively. Plot these points also on the same graph paper.
  3. Write down:
    1. the geometrical name of the figure ABB’A’;
    2. the measure of angle ABB’;
    3. the image of A” of A, when A is reflected in the origin.
    4. the single transformation that maps A’ to A”.

Points (3, 0) and (–1, 0) are invariant points under reflection in the line L1; points (0, –3) and (0, 1) are invariant points on reflection in line L2.

  1. Name or write equations for the lines L1 and L2.
  2. Write down the images of the points P (3, 4) and Q (–5, –2) on reflection in line L1. Name the images as P’ and Q’ respectively.
  3. Write down the images of P and Q on reflection in L2. Name the images as P” and Q” respectively.
  4. State or describe a single transformation that maps P’ onto P''.

  1. Point P (a, b) is reflected in the x-axis to P’ (5, –2). Write down the values of a and b.
  2. P” is the image of P when reflected in the y-axis. Write down the co-ordinates of P”.
  3. Name a single transformation that maps P’ to P”.

A point P (–2, 3) is reflected in line x = 2 to point P’. Find the co-ordinates of P’.


A point P (a, b) is reflected in the x-axis to P’ (2, –3). Write down the values of a and b. P” is the image of P, reflected in the y-axis. Write down the co-ordinates of P”. Find the co-ordinates of P”’, when P is reflected in the line, parallel to y-axis, such that x = 4.


Points A and B have co-ordinates (3, 4) and (0, 2) respectively. Find the image:

  1. A’ of A under reflection in the x-axis.
  2. B’ of B under reflection in the line AA’.
  3. A” of A under reflection in the y-axis.
  4. B” of B under reflection in the line AA”.

  1. Plot the points A (3, 5) and B (–2, –4). Use 1 cm = 1 unit on both the axes.
  2. A’ is the image of A when reflected in the x-axis. Write down the co-ordinates of A’ and plot it on the graph paper.
  3. B’ is the image of B when reflected in the y-axis, followed by reflection in the origin. Write down the co-ordinates of B’ and plot it on the graph paper.
  4. Write down the geometrical name of the figure AA’BB’.
  5. Name the invariant points under reflection in the x-axis.

The triangle ABC, where A is (2, 6), B is (–3, 5) and C is (4, 7), is reflected in the y-axis to triangle A'B'C'. Triangle A'B'C' is then reflected in the origin to triangle A"B"C".

  1. Write down the co-ordinates of A", B" and C".
  2. Write down a single transformation that maps triangle ABC onto triangle A"B"C".

  1. The point P (2, –4) is reflected about the line x = 0 to get the image Q. Find the co-ordinates of Q.
  2. The point Q is reflected about the line y = 0 to get the image R. Find the co-ordinates of R.
  3. Name the figure PQR.
  4. Find the area of figure PQR.

Use a graph paper for this question.

(Take 2 cm = 1 unit on both x and y axes)

  1. Plot the following points: A(0, 4), B(2, 3), C(1, 1) and D(2, 0).
  2. Reflect points B, C, D on the y-axis and write down their coordinates. Name the images as B', C', D' respectively.
  3. Join the points A, B, C, D, D', C', B' and A in order, so as to form a closed figure. Write down the equation to the line about which if this closed figure obtained is folded, the two parts of the figure exactly coincide.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×