मराठी

The triangle ABC, where A is (2, 6), B is (–3, 5) and C is (4, 7), is reflected in the y-axis to triangle A'B'C'. Triangle A'B'C' is then reflected in the origin to triangle A"B"C". - Mathematics

Advertisements
Advertisements

प्रश्न

The triangle ABC, where A is (2, 6), B is (–3, 5) and C is (4, 7), is reflected in the y-axis to triangle A'B'C'. Triangle A'B'C' is then reflected in the origin to triangle A"B"C".

  1. Write down the co-ordinates of A", B" and C".
  2. Write down a single transformation that maps triangle ABC onto triangle A"B"C".
बेरीज

उत्तर

i. Reflection in y-axis is given by My (x, y) = (–x, y)

∴ A’ = Reflection of A(2, 6) in y-axis = (–2, 6)

Similarly, B’ = (3, 5) and C’ = (–4, 7)

Reflection in origin is given by MO (x, y) = (–x, –y)

∴ A” = Reflection of A’(–2, 6) in origin = (2, –6)

Similarly, B” = (–3, –5) and C” = (4, –7)

ii. A single transformation which maps triangle ABC to triangle A”B”C” is reflection in x-axis.

shaalaa.com
Invariant Points.
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Reflection - Exercise 12 (B) [पृष्ठ १७१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 12 Reflection
Exercise 12 (B) | Q 14 | पृष्ठ १७१

संबंधित प्रश्‍न

Points (3, 0) and (–1, 0) are invariant points under reflection in the line L1; points (0, –3) and (0, 1) are invariant points on reflection in line L2.

  1. Name or write equations for the lines L1 and L2.
  2. Write down the images of the points P (3, 4) and Q (–5, –2) on reflection in line L1. Name the images as P’ and Q’ respectively.
  3. Write down the images of P and Q on reflection in L2. Name the images as P” and Q” respectively.
  4. State or describe a single transformation that maps P’ onto P''.

The point (–2, 0) on reflection in a line is mapped to (2, 0) and the point (5, –6) on reflection in the same line is mapped to (–5, –6).

  1. State the name of the mirror line and write its equation.
  2. State the co-ordinates of the image of (–8, –5) in the mirror line.

The points P (4, 1) and Q (–2, 4) are reflected in line y = 3. Find the co-ordinates of P’, the image of P and Q’, the image of Q.


Points A and B have co-ordinates (3, 4) and (0, 2) respectively. Find the image:

  1. A’ of A under reflection in the x-axis.
  2. B’ of B under reflection in the line AA’.
  3. A” of A under reflection in the y-axis.
  4. B” of B under reflection in the line AA”.

The point P (5, 3) was reflected in the origin to get the image P’.

  1. Write down the co-ordinates of P’.
  2. If M is the foot of the perpendicular from P to the x-axis, find the co-ordinates of M.
  3. If N is the foot of the perpendicular from P’ to the x-axis, find the co-ordinates of N.
  4. Name the figure PMP’N.
  5. Find the area of the figure PMP’N.

The point P (3, 4) is reflected to P’ in the x-axis; and O’ is the image of O (the origin) when reflected in the line PP’. Write:

  1. the co-ordinates of P’ and O’.
  2. the length of the segments PP’ and OO’.
  3. the perimeter of the quadrilateral POP’O’.
  4. the geometrical name of the figure POP’O’.

  1. The point P (2, –4) is reflected about the line x = 0 to get the image Q. Find the co-ordinates of Q.
  2. The point Q is reflected about the line y = 0 to get the image R. Find the co-ordinates of R.
  3. Name the figure PQR.
  4. Find the area of figure PQR.

A’ and B’ are images of A (-3, 5) and B (-5, 3) respectively on reflection in y-axis. Find: (

a) the co-ordinates of A’ and B’.

(b) Assign special name of quadrilateral AA’B’B.

(c) Are AB’ and BA’ equal in length?


Use graph paper for this question.

(Take 2 cm = 1 unit along both x-axis and y-axis.)

Plot the points O(0, 0), A(–4, 4), B(–3, 0) and C(0, –3).

  1. Reflect points A and B on the y-axis and name them A' and B' respectively. Write down their co-ordinates.
  2. Name the figure OABCB'A'.
  3. State the line of symmetry of this figure.

Use a graph paper for this question.

(Take 2 cm = 1 unit on both x and y axes)

  1. Plot the following points: A(0, 4), B(2, 3), C(1, 1) and D(2, 0).
  2. Reflect points B, C, D on the y-axis and write down their coordinates. Name the images as B', C', D' respectively.
  3. Join the points A, B, C, D, D', C', B' and A in order, so as to form a closed figure. Write down the equation to the line about which if this closed figure obtained is folded, the two parts of the figure exactly coincide.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×