मराठी

The point (–2, 0) on reflection in a line is mapped to (2, 0) and the point (5, –6) on reflection in the same line is mapped to (–5, –6). State the name of the mirror line and write its equation. - Mathematics

Advertisements
Advertisements

प्रश्न

The point (–2, 0) on reflection in a line is mapped to (2, 0) and the point (5, –6) on reflection in the same line is mapped to (–5, –6).

  1. State the name of the mirror line and write its equation.
  2. State the co-ordinates of the image of (–8, –5) in the mirror line.
बेरीज

उत्तर

i. We know reflection of a point (x, y) in y-axis is (–x, y).

Hence, the point (–2, 0) when reflected in y-axis is mapped to (2, 0).

Thus, the mirror line is the y-axis and its equation is x = 0.

ii. Co-ordinates of the image of (–8, –5) in the mirror line (i.e., y-axis) are (8, –5).

shaalaa.com
Invariant Points.
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Reflection - Exercise 12 (B) [पृष्ठ १७०]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 12 Reflection
Exercise 12 (B) | Q 4 | पृष्ठ १७०

संबंधित प्रश्‍न

A point P (–2, 3) is reflected in line x = 2 to point P’. Find the co-ordinates of P’.


A point P (a, b) is reflected in the x-axis to P’ (2, –3). Write down the values of a and b. P” is the image of P, reflected in the y-axis. Write down the co-ordinates of P”. Find the co-ordinates of P”’, when P is reflected in the line, parallel to y-axis, such that x = 4.


The point P (5, 3) was reflected in the origin to get the image P’.

  1. Write down the co-ordinates of P’.
  2. If M is the foot of the perpendicular from P to the x-axis, find the co-ordinates of M.
  3. If N is the foot of the perpendicular from P’ to the x-axis, find the co-ordinates of N.
  4. Name the figure PMP’N.
  5. Find the area of the figure PMP’N.

The point P (3, 4) is reflected to P’ in the x-axis; and O’ is the image of O (the origin) when reflected in the line PP’. Write:

  1. the co-ordinates of P’ and O’.
  2. the length of the segments PP’ and OO’.
  3. the perimeter of the quadrilateral POP’O’.
  4. the geometrical name of the figure POP’O’.

A (1, 1), B (5, 1), C (4, 2) and D (2, 2) are vertices of a quadrilateral. Name the quadrilateral ABCD. A, B, C, and D are reflected in the origin on to A’, B’, C’ and D’ respectively. Locate A’, B’, C’ and D’ on the graph sheet and write their co-ordinates. Are D, A, A’ and D’ collinear?


P and Q have co-ordinates (0, 5) and (–2, 4).

  1. P is invariant when reflected in an axis. Name the axis.
  2. Find the image of Q on reflection in the axis found in (a).
  3. (0, k) on reflection in the origin is invariant. Write the value of k.
  4. Write the co-ordinates of the image of Q, obtained by reflecting it in the origin followed by reflection in x-axis.

The triangle ABC, where A is (2, 6), B is (–3, 5) and C is (4, 7), is reflected in the y-axis to triangle A'B'C'. Triangle A'B'C' is then reflected in the origin to triangle A"B"C".

  1. Write down the co-ordinates of A", B" and C".
  2. Write down a single transformation that maps triangle ABC onto triangle A"B"C".

Using a graph paper, plot the point A (6, 4) and B (0, 4).

(a) Reflect A and B in the origin to get the image A’ and B’.

(b) Write the co-ordinates of A’ and B’.

(c) Sate the geometrical name for the figure ABA’B’.

(d) Find its perimeter.


Use graph paper for this question.

(Take 2 cm = 1 unit along both x-axis and y-axis.)

Plot the points O(0, 0), A(–4, 4), B(–3, 0) and C(0, –3).

  1. Reflect points A and B on the y-axis and name them A' and B' respectively. Write down their co-ordinates.
  2. Name the figure OABCB'A'.
  3. State the line of symmetry of this figure.

Use a graph paper for this question.

(Take 2 cm = 1 unit on both x and y axes)

  1. Plot the following points: A(0, 4), B(2, 3), C(1, 1) and D(2, 0).
  2. Reflect points B, C, D on the y-axis and write down their coordinates. Name the images as B', C', D' respectively.
  3. Join the points A, B, C, D, D', C', B' and A in order, so as to form a closed figure. Write down the equation to the line about which if this closed figure obtained is folded, the two parts of the figure exactly coincide.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×