हिंदी

The point (–2, 0) on reflection in a line is mapped to (2, 0) and the point (5, –6) on reflection in the same line is mapped to (–5, –6). State the name of the mirror line and write its equation. - Mathematics

Advertisements
Advertisements

प्रश्न

The point (–2, 0) on reflection in a line is mapped to (2, 0) and the point (5, –6) on reflection in the same line is mapped to (–5, –6).

  1. State the name of the mirror line and write its equation.
  2. State the co-ordinates of the image of (–8, –5) in the mirror line.
योग

उत्तर

i. We know reflection of a point (x, y) in y-axis is (–x, y).

Hence, the point (–2, 0) when reflected in y-axis is mapped to (2, 0).

Thus, the mirror line is the y-axis and its equation is x = 0.

ii. Co-ordinates of the image of (–8, –5) in the mirror line (i.e., y-axis) are (8, –5).

shaalaa.com
Invariant Points.
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Reflection - Exercise 12 (B) [पृष्ठ १७०]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 12 Reflection
Exercise 12 (B) | Q 4 | पृष्ठ १७०

संबंधित प्रश्न

Attempt this question on graph paper.

  1. Plot A (3, 2) and B (5, 4) on graph paper. Take 2 cm = 1 unit on both the axes.
  2. Reflect A and B in the x-axis to A’ and B’ respectively. Plot these points also on the same graph paper.
  3. Write down:
    1. the geometrical name of the figure ABB’A’;
    2. the measure of angle ABB’;
    3. the image of A” of A, when A is reflected in the origin.
    4. the single transformation that maps A’ to A”.

  1. Point P (a, b) is reflected in the x-axis to P’ (5, –2). Write down the values of a and b.
  2. P” is the image of P when reflected in the y-axis. Write down the co-ordinates of P”.
  3. Name a single transformation that maps P’ to P”.

The points P (4, 1) and Q (–2, 4) are reflected in line y = 3. Find the co-ordinates of P’, the image of P and Q’, the image of Q.


The point P (3, 4) is reflected to P’ in the x-axis; and O’ is the image of O (the origin) when reflected in the line PP’. Write:

  1. the co-ordinates of P’ and O’.
  2. the length of the segments PP’ and OO’.
  3. the perimeter of the quadrilateral POP’O’.
  4. the geometrical name of the figure POP’O’.

P and Q have co-ordinates (0, 5) and (–2, 4).

  1. P is invariant when reflected in an axis. Name the axis.
  2. Find the image of Q on reflection in the axis found in (a).
  3. (0, k) on reflection in the origin is invariant. Write the value of k.
  4. Write the co-ordinates of the image of Q, obtained by reflecting it in the origin followed by reflection in x-axis.

The triangle ABC, where A is (2, 6), B is (–3, 5) and C is (4, 7), is reflected in the y-axis to triangle A'B'C'. Triangle A'B'C' is then reflected in the origin to triangle A"B"C".

  1. Write down the co-ordinates of A", B" and C".
  2. Write down a single transformation that maps triangle ABC onto triangle A"B"C".

  1. The point P (2, –4) is reflected about the line x = 0 to get the image Q. Find the co-ordinates of Q.
  2. The point Q is reflected about the line y = 0 to get the image R. Find the co-ordinates of R.
  3. Name the figure PQR.
  4. Find the area of figure PQR.

A’ and B’ are images of A (-3, 5) and B (-5, 3) respectively on reflection in y-axis. Find: (

a) the co-ordinates of A’ and B’.

(b) Assign special name of quadrilateral AA’B’B.

(c) Are AB’ and BA’ equal in length?


Use graph paper for this question.

(Take 2 cm = 1 unit along both x-axis and y-axis.)

Plot the points O(0, 0), A(–4, 4), B(–3, 0) and C(0, –3).

  1. Reflect points A and B on the y-axis and name them A' and B' respectively. Write down their co-ordinates.
  2. Name the figure OABCB'A'.
  3. State the line of symmetry of this figure.

Points (3, 0) and (-1, 0) are invarient points under reflection in the line L1; point (0, -3) and (0, 1) are invarient points on reflection in line L2.
(i) Write the equation of the line L1 and L2.
(ii) Write down the images of points P(3, 4) and Q(-5, -2) on reflection in L1. Name the images as P' and Q' respectively.
(iii) Write down the images of P and Q on reflection in L2. Name the image as P'' and Q'' respectively.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×