हिंदी

Attempt this Question on Graph Paper. (A) Plot a (3, 2) and B (5, 4) on Graph Paper. Take 2 Cm = 1 Unit on Both the Axes. - Mathematics

Advertisements
Advertisements

प्रश्न

Attempt this question on graph paper.

  1. Plot A (3, 2) and B (5, 4) on graph paper. Take 2 cm = 1 unit on both the axes.
  2. Reflect A and B in the x-axis to A’ and B’ respectively. Plot these points also on the same graph paper.
  3. Write down:
    1. the geometrical name of the figure ABB’A’;
    2. the measure of angle ABB’;
    3. the image of A” of A, when A is reflected in the origin.
    4. the single transformation that maps A’ to A”.
आलेख

उत्तर

  1. ∵ From the graph, we can say that
  2. ∵ Mx (x, y) = (x, –y)
    Thus, Mx (3, 2) = (3, –2) and Mx (5, 4) = (5, –4)
    1. an isosceles trapezium
    2. 45°
    3. ∵ Mo (x, y) = (–x, –y)
    4. Now A' (3, –2) `\implies` A" (–3, –2)  ...[∵ My (x, y) = (–x, y)]

shaalaa.com
Invariant Points.
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Reflection - Exercise 12 (B) [पृष्ठ १७०]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 12 Reflection
Exercise 12 (B) | Q 1 | पृष्ठ १७०

संबंधित प्रश्न

  1. Point P (a, b) is reflected in the x-axis to P’ (5, –2). Write down the values of a and b.
  2. P” is the image of P when reflected in the y-axis. Write down the co-ordinates of P”.
  3. Name a single transformation that maps P’ to P”.

The point (–2, 0) on reflection in a line is mapped to (2, 0) and the point (5, –6) on reflection in the same line is mapped to (–5, –6).

  1. State the name of the mirror line and write its equation.
  2. State the co-ordinates of the image of (–8, –5) in the mirror line.

A point P (a, b) is reflected in the x-axis to P’ (2, –3). Write down the values of a and b. P” is the image of P, reflected in the y-axis. Write down the co-ordinates of P”. Find the co-ordinates of P”’, when P is reflected in the line, parallel to y-axis, such that x = 4.


  1. Plot the points A (3, 5) and B (–2, –4). Use 1 cm = 1 unit on both the axes.
  2. A’ is the image of A when reflected in the x-axis. Write down the co-ordinates of A’ and plot it on the graph paper.
  3. B’ is the image of B when reflected in the y-axis, followed by reflection in the origin. Write down the co-ordinates of B’ and plot it on the graph paper.
  4. Write down the geometrical name of the figure AA’BB’.
  5. Name the invariant points under reflection in the x-axis.

The point P (5, 3) was reflected in the origin to get the image P’.

  1. Write down the co-ordinates of P’.
  2. If M is the foot of the perpendicular from P to the x-axis, find the co-ordinates of M.
  3. If N is the foot of the perpendicular from P’ to the x-axis, find the co-ordinates of N.
  4. Name the figure PMP’N.
  5. Find the area of the figure PMP’N.

The point P (3, 4) is reflected to P’ in the x-axis; and O’ is the image of O (the origin) when reflected in the line PP’. Write:

  1. the co-ordinates of P’ and O’.
  2. the length of the segments PP’ and OO’.
  3. the perimeter of the quadrilateral POP’O’.
  4. the geometrical name of the figure POP’O’.

A (1, 1), B (5, 1), C (4, 2) and D (2, 2) are vertices of a quadrilateral. Name the quadrilateral ABCD. A, B, C, and D are reflected in the origin on to A’, B’, C’ and D’ respectively. Locate A’, B’, C’ and D’ on the graph sheet and write their co-ordinates. Are D, A, A’ and D’ collinear?


  1. The point P (2, –4) is reflected about the line x = 0 to get the image Q. Find the co-ordinates of Q.
  2. The point Q is reflected about the line y = 0 to get the image R. Find the co-ordinates of R.
  3. Name the figure PQR.
  4. Find the area of figure PQR.

A’ and B’ are images of A (-3, 5) and B (-5, 3) respectively on reflection in y-axis. Find: (

a) the co-ordinates of A’ and B’.

(b) Assign special name of quadrilateral AA’B’B.

(c) Are AB’ and BA’ equal in length?


Using a graph paper, plot the point A (6, 4) and B (0, 4).

(a) Reflect A and B in the origin to get the image A’ and B’.

(b) Write the co-ordinates of A’ and B’.

(c) Sate the geometrical name for the figure ABA’B’.

(d) Find its perimeter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×