Advertisements
Advertisements
प्रश्न
Use graph paper for this question. The following table shows the weights in gm of a sample of 100 potatoes taken from a large consignment:
Weight (gms) | Frequency |
50 - 60 | 8 |
60 - 70 | 10 |
70 - 80 | 12 |
80 - 90 | 16 |
90 - 100 | 18 |
100 - 110 | 14 |
110 - 120 | 12 |
120 - 130 | 10 |
(i) Calculate the cumulative frequencies.
(ii) Draw the cumulative frequency curve and form it determine the median weights of the potatoes.
उत्तर
(i) The cumulative frequencies table is :
Weight (gm) | Number of potatoes (f) | Cummulative Frequency |
50 - 60 | 8 | 8 |
60 - 70 | 10 | 18 |
70 - 80 | 12 | 30 |
80 - 90 | 16 | 46 |
90 - 100 | 18 | 64 |
100 - 110 | 14 | 78 |
110 - 120 | 12 | 90 |
120 - 130 | 10 | 100 |
(ii) Plotting the points (60, 8), (70, 18), (80, 30), (90, 46), (100, 64), (110, 78), (120, 90), (130, 100) and joining them by a free hand we get cummulative frequency curve as shown the figure. To complete it, we join the curve to the point (lower limit of the lowest class, 50) i.e., (50, 0).
The positive of median is given by `"n"/(2) = (100)/(2)` = 50.
On vertical axis form the mark of 50. Draw the horizontal line cutting the curve at a point for which the abscissa is 92 gms. Which is the value of the median.
APPEARS IN
संबंधित प्रश्न
Draw an ogive by less than method for the following data:
No. of rooms: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
No. of houses: | 4 | 9 | 22 | 28 | 24 | 12 | 8 | 6 | 5 | 2 |
Draw an ogive to represent the following frequency distribution:
Class-interval: | 0 - 4 | 5 - 9 | 10 - 14 | 15 - 19 | 20 - 24 |
Frequency: | 2 | 6 | 10 | 5 | 3 |
The following table gives the height of trees:
Height | No. of trees |
Less than 7 Less than 14 Less than 21 Less than 28 Less than 35 Less than 42 Less than 49 Less than 56 |
26 57 92 134 216 287 341 360 |
Draw 'less than' ogive and 'more than' ogive.
Draw an ogive for the following distributions:
Marks obtained | less than 10 | less than 20 | less than 30 | less than 40 | less than 50 |
No. of students | 8 | 25 | 38 | 50 | 67 |
Draw an ogive for the following :
Marks obtained | Less than 10 | Less than 20 | Less than 30 | Less than 40 | Less than 50 |
No. of students | 8 | 22 | 48 | 60 | 75 |
Draw an ogive for the following :
Age in years | Less than 10 | Less than 20 | Less than 30 | Less than 40 | Less than 50 |
No. of people | 0 | 17 | 42 | 67 | 100 |
Draw an ogive for the following :
Marks (More than) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Cumulative Frequency | 100 | 87 | 65 | 55 | 42 | 36 | 31 | 21 | 18 | 7 | 0 |
The marks obtained by 100 students of a class in an examination are given below.
Marks | No. of students |
0-5 | 2 |
5-10 | 5 |
10-15 | 6 |
15-20 | 8 |
20-25 | 10 |
25-30 | 25 |
30-35 | 20 |
35-40 | 18 |
40-45 | 4 |
45-50 | 2 |
Draw 'a less than' type cumulative frequency curves (orgive). Hence find median
The following is the frequency distribution with unknown frequencies :
Class | 60-70 | 70-80 | 80-90 | 90-100 | Total |
frequency | `"a"/2` | `(3"a")/2` | 2a | a | 50 |
Find the value of a, hence find the frequencies. Draw a histogram and frequency polygon on the same coordinate system.
Using a graph paper, drawn an Ogive for the following distribution which shows a record of the weight in kilograms of 200 students.
Weight | Frequency |
40 - 45 | 5 |
45 - 50 | 17 |
50 - 55 | 22 |
55 - 60 | 45 |
60 - 65 | 51 |
65 - 70 | 31 |
70 - 75 | 20 |
75 - 80 | 9 |
Use your ogive to estimate the following:
(i) The percentage of students weighing 55kg or more.
(ii) The weight above which the heaviest 30% of the students fall.
(iii) The number of students who are:
(1) under-weight and
(2) over-weight, if 55·70 kg is considered as standard weight.