Advertisements
Advertisements
प्रश्न
Which of the following has the same mean, median and mode?
पर्याय
6, 2, 5, 4, 3, 4, 1
4, 2, 2, 1, 3, 2, 3
2, 3, 7, 3, 8, 3, 2
4, 3, 4, 3, 4, 6, 4
उत्तर
4, 3, 4, 3, 4, 6, 4
Explanation:
Mean of the given data = `(4 + 3 + 4 + 3 + 4 + 6 + 4)/7` = 4
Mode is the observation that occurs most frequently in the data i.e. 4
When the given data is arranged in ascending (or descending) order, then the middle most observation is the median of the data
Arranging the given data, 3, 3, 4, 4, 4, 4, 6
So, the median is 4.
APPEARS IN
संबंधित प्रश्न
Calculate the mean of the following distribution using step deviation method.
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Number of students |
10 | 9 | 25 | 0 | 16 | 10 |
Using a graph paper draw a histogram of the given distribution showing the number of runs scored by 50 batsmen. Estimate the mode of the data:
Runs scored |
3000- 4000 |
4000- 5000 |
5000- 6000 |
6000- 7000 |
7000- 8000 |
8000- 9000 |
9000- 10000 |
No. of batsmen |
4 | 18 | 9 | 6 | 7 | 2 | 4 |
The following distribution represents the height of 160 students of a school.
Height (in cm) | No. of Students |
140 – 145 | 12 |
145 – 150 | 20 |
150 – 155 | 30 |
155 – 160 | 38 |
160 – 165 | 24 |
165 – 170 | 16 |
170 – 175 | 12 |
175 – 180 | 8 |
Draw an ogive for the given distribution taking 2 cm = 5 cm of height on one axis and 2 cm = 20 students on the other axis. Using the graph, determine:
- The median height.
- The interquartile range.
- The number of students whose height is above 172 cm.
1) Using step–deviation method, calculate the mean marks of the following distribution.
2) State the modal class.
Class Interval | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 – 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
The data on the number of patients attending a hospital in a month are given below. Find the average (mean) number of patients attending the hospital in a month by using the shortcut method. Take the assumed mean as 45. Give your answer correct to 2 decimal places.
Number of patients | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 |
Number of Days | 5 | 2 | 7 | 9 | 2 | 5 |
Draw a histogram for the following distribution and estimate the mode:
I.Q. Score | 80-100 | 100-120 | 120-140 | 140-160 | 160-180 | 180-200 |
No. of Students | 6 | 9 | 16 | 13 | 4 | 2 |
Estimate the median, the lower quartile and the upper quartile of the following frequency distribution by drawing an ogive:
Class Interval | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
Frequency | 4 | 12 | 21 | 18 | 15 | 7 | 3 |
The pocket expenses (per day) of Anuj, during a certain week, from Monday to Saturday were ₹85.40, ₹88.00, ₹86.50, ₹84.75, ₹82.60 and ₹87.25. Find the mean pocket expenses per day.
Find the mean of the first six multiples of 5.
Find the median of 5, 7, 9, 11, 15, 17, 2, 23 and 19.