Advertisements
Advertisements
प्रश्न
Which term of the G.P.:
`-10, 5/sqrt(3), -5/6,....` is `-5/72`?
उत्तर
For the given G.P. :
First term, a = –10
Common ratio, r = `(5/sqrt(3))/(-10) = -1/(2sqrt(3))`
If `-5/72` is the nth term of the given G.P., then `-5/(72)` = arn – 1
`\implies -5/72 = -10 xx (1/(2sqrt(3)))^(n - 1)`
`\implies 1/144 = (1/(2sqrt(3)))^(n - 1)`
`\implies 1/(2 xx 2 xx 2 xx 2 xx sqrt(3) xx sqrt(3) xx sqrt(3) xx sqrt(3)) =(1/(2sqrt3))^(n - 1)`
`\implies (1/(2sqrt3))^4=(1/(2sqrt3))^("n"-1)`
`\implies` n – 1 = 4
`\implies` n = 4 + 1
`\implies` n = 5
APPEARS IN
संबंधित प्रश्न
Find the third term from the end of the G.P.
`2/27, 2/9, 2/3, .........,162.`
Q 7
Q 8
Q 2
Find the sum of G.P. :
`1 - 1/2 + 1/4 - 1/8 + ..........` to 9 terms.
Find the sum of G.P. :
`sqrt(3) + 1/sqrt(3) + 1/(3sqrt(3)) + ..........` to n terms.
How many terms of the geometric progression 1 + 4 + 16 + 64 + …….. must be added to get sum equal to 5461?
Q 3.1
Q 7
Q 8