मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Without using truth table, show that p ↔ q ≡ (p ∧ q) ∨ (~p ∧ ~q) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Without using truth table, show that

p ↔ q ≡ (p ∧ q) ∨ (~p ∧ ~q)

बेरीज

उत्तर

L.H.S.

≡ p ↔ q

≡ (p → q) ∧ (q → p)

≡ (~p ∨ q) ∧ (~q ∨ p)

≡ [~ p ∧ (~ q ∨ p)] ∨ [q ∧ (~ q ∨ p)]     ....[Distributive law]

≡ [(~ p ∧ ~ q) ∨ (~ p ∧ p)] ∨ [(q ∧ ~ q) ∨ (q ∧ p)]     .....[Distributive Law]

≡ [(~ p ∧ ~ q) ∨ F] ∨ [F ∨ (q ∧ p)]  ....[Complement Law]

≡ (~ p ∧ ~ q) ∨ (q ∧ p)   ....[Identity Law]

≡ (p ∧ q) ∨ (~ p ∧ ~ q)    ....[Commutative Law]

≡ R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Mathematical Logic - Exercise 1.9 [पृष्ठ २२]

APPEARS IN

संबंधित प्रश्‍न

The negation of p ∧ (q → r) is ______________.


Without using truth tabic show that ~(p v q)v(~p ∧ q) = ~p


Without using the truth table show that P ↔ q ≡ (p ∧ q) ∨ (~ p ∧ ~ q)


Using the rules of negation, write the negatlon of the following: 

(a) p ∧ (q → r)

(b)  ~P ∨ ~q


Write the Truth Value of the Negation of the Following Statement :

The Sun sets in the East. 


Rewrite the following statement without using if ...... then.

If a man is a judge then he is honest.


Rewrite the following statement without using if ...... then.

It 2 is a rational number then `sqrt2` is irrational number.


Without using truth table prove that:

(p ∨ q) ∧ (p ∨ ∼ q) ≡ p


Using rules in logic, prove the following:

∼p ∧ q ≡ (p ∨ q) ∧ ∼p


Using rules in logic, prove the following:

∼ (p ∨ q) ∨ (∼p ∧ q) ≡ ∼p


Using the rules in logic, write the negation of the following:

p ∧ (q ∨ r)


Using the rules in logic, write the negation of the following:

(∼p ∧ q) ∨ (p ∧ ∼q)


Let p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r). Then, this law is known as ______.


Without using truth table, show that

~ [(p ∧ q) → ~ q] ≡ p ∧ q


Without using truth table, show that

~r → ~ (p ∧ q) ≡ [~ (q → r)] → ~ p


Using the algebra of statement, prove that

[p ∧ (q ∨ r)] ∨ [~ r ∧ ~ q ∧ p] ≡ p


Using the algebra of statement, prove that

(p ∧ q) ∨ (p ∧ ~ q) ∨ (~ p ∧ ~ q) ≡ (p ∨ ~ q)


Using the algebra of statement, prove that

(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∨ ~ q) ∧ (~ p ∨ q)


(p → q) ∨ p is logically equivalent to ______ 


The statement pattern p ∧ (∼p ∧ q) is ______.


The statement pattern [∼r ∧ (p ∨ q) ∧ (p ∨ q) ∧ (∼p ∧ q)] is equivalent to ______ 


(p ∧ ∼q) ∧ (∼p ∧ q) is a ______.


If p ∨ q is true, then the truth value of ∼ p ∧ ∼ q is ______.


Negation of the Boolean expression `p Leftrightarrow (q \implies p)` is ______. 


∼ ((∼ p) ∧ q) is equal to ______.


Without using truth table, prove that : [(p ∨ q) ∧ ∼p] →q is a tautology.


The simplified form of [(~ p v q) ∧ r] v [(p ∧ ~ q) ∧ r] is ______.


Without using truth table prove that

[(p ∧ q ∧ ∼ p) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r) ≡ (p ∨ q) ∧ r


The statement p → (q → p) is equivalent to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×