Advertisements
Advertisements
प्रश्न
यदि किसी बहुफलकी के 12 फलक और 20 शीर्ष हैं, तो इस ठोस में किनारों की संख्या ______ है।
उत्तर
यदि किसी बहुफलकी के 12 फलक और 20 शीर्ष हैं, तो इस ठोस में किनारों की संख्या 30 है।
स्पष्टीकरण -
हम जानते हैं कि, किसी भी बहुफलक के लिए यूलर का सूत्र F + V – E = 2 है।
दिया गया है, फलक, F = 12, शीर्ष, V = 20
अब, यूलर के सूत्र में F और V का मान रखने पर, हमें 12 + 20 – E = 2 प्राप्त होता है।
⇒ 32 – E = 2
⇒ 32 – 2 = E
⇒ E = 30
अतः, किनारों की संख्या = 30
APPEARS IN
संबंधित प्रश्न
क्या ऐसा बहुफलक संभव है जिसके फलकों की संख्या कोई भी संख्या हो? (संकेत: एक पिरामिड के बारे में सोचिये।)
एक सम बहुफलकी ऐसा ठोस है, जो ______ फलकों से बनता है।
निम्न आकारों को देखिए और बताइए कि इनमें कौन-कौन बहुफलकी हैं।
निम्न आकारों को देखिए और बताइए कि इनमें कौन-कौन बहुफलकी हैं।
निम्न आकारों को देखिए और बताइए कि इनमें कौन-कौन बहुफलकी हैं।
निम्न आकारों को देखिए और बताइए कि इनमें कौन-कौन बहुफलकी हैं।
निम्न आकारों को देखिए और बताइए कि इनमें कौन-कौन बहुफलकी हैं।
निम्न आकारों को देखिए और बताइए कि इनमें कौन-कौन बहुफलकी हैं।
एक बहुफलकी में 20 फलक और 12 शीर्ष हैं। इसके किनारों की संख्या ज्ञात कीजिए।
एक बहुफलकी में 40 फलक और 60 किनारे हैं। इस ठोस के शीषों की संख्या ज्ञात कीजिए।