Advertisements
Advertisements
Question
`1/17` के दशमलव प्रसार में अंकों के पुनरावृत्ति खंड में अंकों की अधिकतम संख्या क्या हो सकती है? अपने उत्तर की जाँच करने के लिए विभाजन-क्रिया कीजिए।
Solution
`1/17` में भाजक 17 है।
चूँकि अंकों के पुनरावृत्ति खंड में प्रविष्टियों की संख्या भाजक से कम है, इसलिए पुनरावृत्ति खंड में अंकों की अधिकतम संख्या 16 है।
1 को 17 से भाग देने पर, हमें प्राप्त होता है
0.0588235294117647...
`17)overline1.0000000000000000`
-85
150
-136
140
-136
40
-34
60
-51
90
-85
50
-34
160
-153
70
-68
20
-17
30
-17
130
-119
110
-102
80
-68
120
-119
-1
शेष 1 वही अंक है जिससे हमने भाग देना शुरू किया था।
∴ `1/17` = `overline0.0588235294117647`
इस प्रकार, `1/17` के दशमलव प्रसार में पुनरावृत्ति खंड में 16 अंक हैं।
अतः हमारा उत्तर सत्यापित है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित भिन्न को दशमलव रूप में लिखिए और बताइए कि निम्न दशमलव प्रसार किस प्रकार का है:
`4 1/8`
निम्नलिखित को `bb(p/q)` के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है:
`0.bar001`
`7/(3sqrt(3) - 2sqrt(2))` के हर का परिमेयीकरण करने पर, हमें प्राप्त हर है :
(256)0.16 × (256)0.09 का मान है :
15 और 18 के बीच में परिमेय संख्याओं की संख्या परिमित है।
`sqrt(12)/sqrt(3)` एक परिमेय संख्या नहीं है, क्योंकि `sqrt(12)` और `sqrt(3)` पूर्णांक नहीं है।
`sqrt(15)/sqrt(3), p/q, q ≠ 0` के रूप में लिखी है, इसलिए यह एक परिमेय संख्या है।
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
0.5918
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`(1 + sqrt(5)) - (4 + sqrt(5))`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
10.124124...