Advertisements
Advertisements
प्रश्न
`1/17` के दशमलव प्रसार में अंकों के पुनरावृत्ति खंड में अंकों की अधिकतम संख्या क्या हो सकती है? अपने उत्तर की जाँच करने के लिए विभाजन-क्रिया कीजिए।
उत्तर
`1/17` में भाजक 17 है।
चूँकि अंकों के पुनरावृत्ति खंड में प्रविष्टियों की संख्या भाजक से कम है, इसलिए पुनरावृत्ति खंड में अंकों की अधिकतम संख्या 16 है।
1 को 17 से भाग देने पर, हमें प्राप्त होता है
0.0588235294117647...
`17)overline1.0000000000000000`
-85
150
-136
140
-136
40
-34
60
-51
90
-85
50
-34
160
-153
70
-68
20
-17
30
-17
130
-119
110
-102
80
-68
120
-119
-1
शेष 1 वही अंक है जिससे हमने भाग देना शुरू किया था।
∴ `1/17` = `overline0.0588235294117647`
इस प्रकार, `1/17` के दशमलव प्रसार में पुनरावृत्ति खंड में 16 अंक हैं।
अतः हमारा उत्तर सत्यापित है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित भिन्न को दशमलव रूप में लिखिए और बताइए कि निम्न दशमलव प्रसार किस प्रकार का है:
`1/11`
निम्नलिखित भिन्न को दशमलव रूप में लिखिए और बताइए कि निम्न दशमलव प्रसार किस प्रकार का है:
`329/400`
0.99999 .... को `p/q` के रूप में व्यक्त कीजिए। क्या आप अपने उत्तर से आश्चर्यचकित है? अपने अध्यापक और कक्षा के सहयोगियों के साथ उत्तर की सार्थकता पर चर्चा कीजिए।
ऐसी तीन संख्याएँ लिखिए जिनके दशमलव प्रसार अनवसानी अनावर्ती हों।
`1/(sqrt(7) - 2)` के हर का परिमेयीकरण करने पर प्राप्त संख्या है :
`7/(3sqrt(3) - 2sqrt(2))` के हर का परिमेयीकरण करने पर, हमें प्राप्त हर है :
यदि `sqrt(2) = 1.4142` है, तो `sqrt((sqrt(2) - 1)/(sqrt(2) + 1))` बराबर है :
`sqrt(12)/sqrt(3)` एक परिमेय संख्या नहीं है, क्योंकि `sqrt(12)` और `sqrt(3)` पूर्णांक नहीं है।
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`sqrt(196)`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`3sqrt(18)`