Advertisements
Advertisements
प्रश्न
`7/(3sqrt(3) - 2sqrt(2))` के हर का परिमेयीकरण करने पर, हमें प्राप्त हर है :
विकल्प
13
19
5
35
उत्तर
19
स्पष्टीकरण -
दिया गया है - संख्या `7/(3sqrt(3) - 2sqrt(2))`
युक्तियुक्तकरण के बाद - `7/(3sqrt(3) - 2sqrt(2)) = 7/(3sqrt(3) - 2sqrt(2)) xx (3sqrt(3) + 2sqrt(2))/(3sqrt(3) + 2sqrt(2))`
= `(7(3sqrt(3) + 2sqrt(2)))/((3sqrt(3))^2 - 2(sqrt(2))^2`
= `(7(3sqrt(3) + 2sqrt(2)))/(27 - 8)`
= `(7(3sqrt(3) + 2sqrt(2)))/19`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित भिन्न को दशमलव रूप में लिखिए और बताइए कि निम्न दशमलव प्रसार किस प्रकार का है:
`3/13`
`1/17` के दशमलव प्रसार में अंकों के पुनरावृत्ति खंड में अंकों की अधिकतम संख्या क्या हो सकती है? अपने उत्तर की जाँच करने के लिए विभाजन-क्रिया कीजिए।
`sqrt(10) xx sqrt(15)` बराबर है :
यदि `sqrt(2) = 1.4142` है, तो `sqrt((sqrt(2) - 1)/(sqrt(2) + 1))` बराबर है :
मान लीजिए कि x एक परिमेय संख्या है और y एक अपरिमेय संख्या है। क्या xy आवश्यक रूप से एक अपरिमेय संख्या है? एक उदाहरण द्वारा अपने उत्तर का औचित्य दीजिए।
एक अपरिमेय संख्या का वर्ग सदैव एक परिमेय संख्या होती है।
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`3sqrt(18)`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`- sqrt(0.4)`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`sqrt(12)/sqrt(75)`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`(1 + sqrt(5)) - (4 + sqrt(5))`