Advertisements
Advertisements
प्रश्न
मान लीजिए कि x एक परिमेय संख्या है और y एक अपरिमेय संख्या है। क्या xy आवश्यक रूप से एक अपरिमेय संख्या है? एक उदाहरण द्वारा अपने उत्तर का औचित्य दीजिए।
उत्तर
दिया है - x परिमेय संख्या है और y अपरिमेय संख्या है।
हाँ, xy आवश्यक रूप से एक अपरिमेय संख्या है।
उदाहरण - मान लीजिए x = 2, जो परिमेय है।
चलो y = `sqrt(2)`, जो अपरिमेय है।
फिर, x × y = `2 xx sqrt(2) = 2sqrt(2)`, जो फिर से अपरिमेय है।
साथ ही, उस स्थिति पर विचार करें जब x = 0
तब xy = 0, जो परिमेय है।
∴ परिमेय संख्या और अपरिमेय संख्या का गुणनफल हमेशा अपरिमेय होता है, केवल तभी जब परिमेय संख्या शून्य न हो।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित भिन्न को दशमलव रूप में लिखिए और बताइए कि निम्न दशमलव प्रसार किस प्रकार का है:
`1/11`
निम्नलिखित भिन्न को दशमलव रूप में लिखिए और बताइए कि निम्न दशमलव प्रसार किस प्रकार का है:
`3/13`
निम्नलिखित भिन्न को दशमलव रूप में लिखिए और बताइए कि निम्न दशमलव प्रसार किस प्रकार का है:
`329/400`
आप जानते हैं कि `1/7 = 0.bar142857` है। वास्तव में, लंबा भाग दिए बिना क्या आप यह बता सकते हैं कि `2/7, 3/7, 4/7, 5/7, 6/7` के दशमलव प्रसार क्या हैं? यदि हाँ, तो कैसे?
[संकेत: `1/7` का मान ज्ञात करते समय शेषफलों का अध्ययन सावधानी से कीजिए।]
निम्नलिखित को `bb(p/q)` के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है:
`0.bar001`
`1/17` के दशमलव प्रसार में अंकों के पुनरावृत्ति खंड में अंकों की अधिकतम संख्या क्या हो सकती है? अपने उत्तर की जाँच करने के लिए विभाजन-क्रिया कीजिए।
`p/q` (q ≠ 0) के रूप की परिमेय संख्याओं के अनेक उदाहरण लीजिए, जहाँ p और q पूर्णाक हैं, जिनका 1 के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है और जिसका सांत दशमलव निरूपण (प्रसार) है। क्या आप यह अनुमान लगा सकते हैं कि q को कौन-सा गुण अवश्य संतुष्ट करना चाहिए?
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
`sqrt23`
कुछ संख्याएँ ऐसी हैं कि जिन्हें `p/q, q ≠ 0` के रूप में नहीं लिखा जा सकता, जहाँ p और q दोनों पूर्णांक हैं।
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
0.5918