Advertisements
Advertisements
Question
3 खुर्च्या व 2 टेबलांची किंमत 4500 रुपये आहे. 5 खुर्च्या व 3 टेबलांची किंमत 7000 रुपये आहे, तर 2 खुर्च्या व 2 टेबलांची एकूण किंमत काढा.
Solution
एका खुर्चीची किंमत ₹ x व एका टेबलाची किंमत ₹ y मानू.
3 खुर्च्या आणि 2 टेबल्सची किंमत 4500 रुपये आहे.
3x + 2y = 4500 ...(i)
5 खुर्च्या आणि 3 टेबलची किंमत 7000 रुपये आहे.
5x + 3y = 7000 ...(ii)
समीकरण (i) ला 3 ने गुणून व समीकरण (ii) ला 2 गुणून,
9x + 6y = 13500 ...(iii)
10x + 6y = 14000 ...(iv)
समीकरण (iii) मधून समीकरण (iv) वजा करून,
9x + 6y = 13500
10x + 6y = 14000
− − −
−x = −500
∴ x = 500
x = 500 ही किंमत समीकरण (i) मध्ये ठेवून,
3 × 500 + 2y = 4500
∴ 1500 + 2y = 4500
∴ 2y = 4500 − 1500 = 3000
∴ y = 1500
∴ 2 खुर्च्या व 2 टेबलांची किंमत
= 2x + 2y
= 2(x + y)
= 2 (500 + 1500)
= 2 × 2000
= 4000
∴ 2 खुर्च्या व 2 टेबलांची किंमत ₹ 4000 आहे.
APPEARS IN
RELATED QUESTIONS
एका अपूर्णांकाचा छेद अंशाच्या दुपटीपेक्षा 1 ने कमी आहे. अंश व छेद यांत प्रत्येकी 1 मिळवल्यास अंशाचे छेदाशी असलेले गुणोत्तर 3 : 5 होते, तर तो अपूर्णांक काढा.
प्रियांका व दीपिका यांच्या वयांची बेरीज 34 वर्षे आहे. प्रियांका दीपिकापेक्षा 6 वर्षांनी मोठी आहे, तर त्यांची वये काढा
एका दोन अंकी संख्येतील अंकांची बेरीज 9 आहे. जर अंकांची अदलाबदल केली तर मिळणारी संख्या ही आधीच्या संख्येपेक्षा 27 ने मोठी आहे, तर ती दोन अंकी संख्या काढा.
ΔABC मध्ये कोन A चे माप हे ∠B व ∠C या कोनांच्या मापांच्या बेरजेएवढे आहे. तसेच ∠B व ∠C यांच्या मापांचे गुणोत्तर 4:5 आहे. तर त्या त्रिकोणाच्या कोनांची मापे काढा.
एका 560 सेमी लांबीच्या दोरीचे दोन तुकडे असे करायचे आहेत, की लहान तुकड्याच्या लांबीची दुप्पट ही मोठ्या तुकड्याच्या लांबीच्या `1/3` पट आहे, तर मोठ्या तुकड्याची लांबी काढा.
एका स्पर्धा परीक्षेत 60 प्रश्न होते. प्रत्येक प्रश्नांच्या बरोबर उत्तराकरिता 2 गुण आणि चुकीच्या उत्तराकरिता ॠण एक गुण देण्यात येणार होता. यशवंतने सर्व 60 प्रश्न सोडवले तेव्हा त्याला 90 गुण मिळाले, तर त्याची किती प्रश्नांची उत्तरे चुकली होती?
एक दोन अंकी संख्या, त्या संख्येतील अंकांच्या बेरजेच्या चौपटीपेक्षा 3 ने मोठी आहे. जर त्या संख्येमध्ये 18 मिळवले तर येणारी बेरीज ही मूळ संख्येतील अंकांची अदलाबदल करून येणारी संख्या मिळते, तर ती संख्या काढा.
एका आयताची लांबी 5 एककाने कमी केली व रुंदी 3 एककाने वाढवली तर त्याचे क्षेत्रफळ 9 चौरस एककाने कमी होते. जर लांबी 3 एककाने कमी केली व रुंदी 2 एककाने वाढवली तर त्याचे क्षेत्रफळ 67 चौरस एककाने वाढते, तर आयताची लांबी व रुंदी काढा.
एका रस्त्यावरील A व B या दोन ठिकाणांमधील अंतर 70 किमी आहे. एक कार A ठिकाणाहून व दुसरी कार B या ठिकाणाहून निघते. जर त्या एकाच दिशेने निघाल्या तर एकमेकींना 7 तासात भेटतात व विरुद्ध दिशेने निघाल्यास 1 तासात भेटतात, तर त्यांचे वेग काढा.
एक दोन अंकी संख्या व त्या संख्येतील अंकांची अदलाबदल करून येणारी संख्या यांची बेरीज 99 आहे, तर ती संख्या काढा.