English
Karnataka Board PUCPUC Science Class 11

A Capacitor Has Capacitance C. is this Information Sufficient to Know What Maximum Charge the Capacitor Can Contain? If Yes, What is this Charges? If No, What Other Information is Needed? - Physics

Advertisements
Advertisements

Question

A capacitor has capacitance C. Is this information sufficient to know what maximum charge the capacitor can contain? If yes, what is this charges? If no, what other information is needed?

Short Note

Solution

No. This information is not sufficient. Since the charge is proportional to the potential difference across the capacitor, we need to know the potential difference applied across the capacitor.

q ∝ V ⇒ q = CV

Here, q is the charge, V is the potential difference applied and C is the proportionality constant, i.e. capacitance.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Capacitors - Short Answers [Page 163]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 9 Capacitors
Short Answers | Q 5 | Page 163

RELATED QUESTIONS

A bulb is connected in series with a variable capacitor and an AC source as shown. What happens to the brightness of the bulb when the key is plugged in and capacitance of the capacitor is gradually reduced?


A capacitor of capacitance C is charged fully by connecting it to a battery of emf E. It is then disconnected from the battery. If the separation between the plates of the capacitor is now doubled, how will the following change?

(i) charge stored by the capacitor.

(ii) Field strength between the plates.

(iii) Energy stored by the capacitor.

Justify your answer in each case.


Find the equivalent capacitance of the network shown in the figure, when each capacitor is of 1 μF. When the ends X and Y are connected to a 6 V battery, find out (i) the charge and (ii) the energy stored in the network.


A capacitor of unknown capacitance is connected across a battery of V volts. The charge stored in it is 300 μC. When potential across the capacitor is reduced by 100 V, the charge stored in it becomes 100 μC. Calculate The potential V and the unknown capacitance. What will be the charge stored in the capacitor if the voltage applied had increased by 100 V?


Suppose, one wishes to construct a 1⋅0 farad capacitor using circular discs. If the separation between the discs be kept at 1⋅0 mm, what would be the radius of the discs?


Find the charge appearing on each of the three capacitors shown in figure .


Find the equivalent capacitance of the infinite ladder shown in figure between the points A and B.


Find the capacitances of the capacitors shown in figure . The plate area is Aand the separation between the plates is d. Different dielectric slabs in a particular part of the figure are of the same thickness and the entire gap between the plates is filled with the dielectric slabs.


A capacitor is formed by two square metal-plates of edge a, separated by a distance d. Dielectrics of dielectric constant K1 and K2 are filled in the gap as shown in figure . Find the capacitance.


A parallel-plate capacitor of plate area A and plate separation d is charged to a potential difference V and then the battery is disconnected. A slab of dielectric constant K is then inserted between the plates of the capacitor so as to fill the space between the plates. Find the work done on the system in the process of inserting the slab.


Consider the situation shown in figure. The plates of the capacitor have plate area A and are clamped in the laboratory. The dielectric slab is released from rest with a length a inside the capacitor. Neglecting any effect of friction or gravity, show that the slab will execute periodic motion and find its time period.


Calculate the resultant capacitances for each of the following combinations of capacitors.







A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor ______.

Capacitors are used in electrical circuits where appliances need more ______.

The radius of a sphere of capacity 1 microfarad in the air is ______


A capacitor of 4 µ F is connected as shown in the circuit (Figure). The internal resistance of the battery is 0.5 Ω. The amount of charge on the capacitor plates will be ______.


A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (U) as ε = αU where α = 2V–1. A similar capacitor with no dielectric is charged to U0 = 78V. It is then connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.


The material filled between the plates of a parallel plate capacitor has a resistivity of 200Ωm. The value of the capacitance of the capacitor is 2 pF. If a potential difference of 40V is applied across the plates of the capacitor, then the value of leakage current flowing out of the capacitor is ______.

(given the value of relative permittivity of a material is 50.)


A capacitor has charge 50 µC. When the gap between the plate is filled with glass wool, then 120 µC charge flows through the battery to capacitor. The dielectric constant of glass wool is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×