English
Karnataka Board PUCPUC Science Class 11

The Plates of a Parallel-plate Capacitor Are Given Equal Positive Charges. What Will Be the Potential Difference Between the Plates? What Will Be the Charges - Physics

Advertisements
Advertisements

Question

The plates of a parallel-plate  capacitor are given equal positive charges. What will be the potential difference between the plates? What will be the charges on the facing surfaces and on the outer surfaces?

Short Note

Solution

It is given that the plates of the capacitor have the same charges. In other words, they are at the same potential, so the potential difference between them is zero.

Let us consider that the charge on face II is so that the induced charge on face III is `-q` and the distribution is according to the figure. 

Now, if we consider Gaussian surface ABCD, whose faces lie inside the two plates, and calculate the field at point P due to all four surfaces, it will be 

`E_1 = (Q-q)/(2∈_0A)`

`E_2 = (q)/(2∈_0A)`

`E_3 = (q)/(-2∈_0A)`

`E_4 = (Q+q)/(2∈_0A)`     (It is `-Ve` because point P is on the left side of face IV. )

Now, as point P lies inside the conductor, the total field must be zero.

`therefore` E1 + E2 + E3 + E4 = 0

Or

`Q-q+q-q+Q+q = 0`

∴ q = 0 

Hence, on faces II and III, the charge is equal to zero; and on faces I and IV, the charge is Q.
Thus, it seems that the whole charge given is moved to the outer surfaces, with zero charge on the facing surfaces.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Capacitors - Short Answers [Page 163]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 9 Capacitors
Short Answers | Q 4 | Page 163

RELATED QUESTIONS

A capacitor 'C', a variable resistor 'R' and a bulb 'B' are connected in series to the ac mains in circuit as shown. The bulb glows with some brightness. How will the glow of the bulb change if (i) a dielectric slab is introduced between the plates of the capacitor, keeping resistance R to be the same; (ii) the resistance R is increased keeping the same capacitance?


Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected in parallel. Determine the charge on each capacitor if the combination is connected to a 100 V supply.


A circuit is set up by connecting inductance L = 100 mH, resistor R = 100 Ω and a capacitor of reactance 200 Ω in series. An alternating emf of \[150\sqrt{2}\]  V, 500/π Hz is applies across this series combination. Calculate the power dissipated in the resistor.


Suppose a charge +Q1 is given to the positive plate and a charge −Q2 to the negative plate of a capacitor. What is the "charge on the capacitor"?


The following figure shows two capacitors connected in series and joined to a battery. The graph shows the variation in potential as one moves from left to right on the branch containing the capacitors.


Each plate of a parallel plate capacitor has a charge q on it. The capacitor is now connected to a batter. Now,
(a) the facing surfaces of the capacitor have equal and opposite charges
(b) the two plates of the capacitor have equal and opposite charges
(c) the battery supplies equal and opposite charges to the two plates
(d) the outer surfaces of the plates have equal charges


The separation between the plates of a charged parallel-plate capacitor is increased. Which of the following quantities will change?
(a) Charge on the capacitor
(b) Potential difference across the capacitor
(c) Energy of the capacitor
(d) Energy density between the plates


A parallel-plate capacitor is connected to a battery. A metal sheet of negligible thickness is placed between the plates. The sheet remains parallel to the plates of the capacitor.


A parallel-plate capacitor having plate area 25 cm2 and separation 1⋅00 mm is connected to a battery of 6⋅0 V. Calculate the charge flown through the battery. How much work has been done by the battery during the process?


Three capacitors of capacitance `C_1 = 3muf` , `C_2 = 6muf` , `C_3 = 10muf` , are connected to a 10V battery as shown in figure 3 below : 

Calculate :

(a) Equivalent capacitance.

(b) Electrostatic potential energy stored in the system 


An ac circuit consists of a series combination of circuit elements X and Y. The current is ahead of the voltage  in phase by `pi /4` . If element X is a pure resistor of 100Ω ,

(a)  name the circuit element Y.
(b)  calculate the rms value of current, if rms value of voltage is  141V.
(c)  what will happen if the ac source is replaced by a dc source ?


A wire of resistance 'R' is cut into 'n' equal parts. These parts are then connected in parallel with each other. The equivalent resistance of the combination is : 


An ac circuit consists of a series combination of circuit elements X and Y. The current is ahead of the voltage in phase by `pi/4`. If element X is a pure resistor of 100 Ω,

(a) name the circuit element Y.

(b) calculate the rms value of current, if rms of voltage is 141 V.

(c) what will happen if the ac source is replaced by a dc source


On decreasing the distance between the plates of a parallel plate capacitor, its capacitance ______.

Three capacitors each of 4 µF are to be connected in such a way that the effective capacitance is 6µF. This can be done by connecting them:


Three different capacitors are·connected in series. Then:-


The equivalent capacitance of the combination shown in the figure is ______.


Two charges q1 and q2 are placed at (0, 0, d) and (0, 0, – d) respectively. Find locus of points where the potential a zero.


A capacitor of capacity C1 is charged to the potential of V0. On disconnecting with the battery, it is connected with an uncharged capacitor of capacity C2 as shown in the adjoining figure. Find the ratio of energies before and after the connection of switch S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×