Advertisements
Advertisements
Question
A car covers a distance of 400 km at a certain speed. Had the speed been 12 km/hr more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car.
Solution 1
Let the original speed of the car be x
km/hr,
so, Time taken by car = `(400)/x"hrs"`.
Again, Speed = (x + 12) km/hr
Time taken by car = `(400)/(x + 12)`
so, `(400)/x - (400)/(x + 12) = 1 "hr" + (40)/(60)`
`400((x + 12 - x))/(x (x + 12)) = (5)/(3)`
`(4800)/(x^2 + 12x) = (5)/(3)`
⇒ 5 (x2 + 12x) = 14,400
⇒ x2 + 12x - 2,880 = 0
⇒ x2 + 60x - 48x - 2,880 = 0
⇒ x (x + 60) - 48 (x + 60) = 0
⇒ (x + 60) (x - 48) = 0
Either, x + 60 = 0
x = -60 ...(Neglect, Speed can't be negative)
or
x - 48 = 0
x = 48
⇒ Original speed of the car is 48 km/hr.
Solution 2
Let the original speed of the car = x km/h.
Distance covered = 400km
Time taken to cover 400km = `(400)/x"h"`
In second case,
Speed of car = (x + 12)km/h
New time taken to cover 400km = `(400)/(x + 12)"h"`
According to the condition
`(400)/x - (400)/(x + 12)`
= `1(40)/(60)`
= `1(2)/(3)`
= `(5)/(3)`.
⇒ `400((x + 12 - x)/(x(x + 12))) = (5)/(3)`
⇒ `(400 xx 12)/(x^2 + 12x) = (5)/(3)`
400x 12 x 3 = 5x2 + 60x
⇒ 1400 = 5x2 + 60x
⇒ 5x2 + 60x - 14400 = 0
⇒ x2 + 12x - 2880 = 0 ...(dividing both side by 5)
⇒ x2 + 60x - 48x - 2880 = 0
⇒ x(x + 60) - 48(x + 60) = 0
⇒ (x + 60)(x - 48) = 0
⇒ x = 48
or
⇒ x = -60
⇒ x = 48 ...(Rejecting x = -60, being speed)
Hence, orginal speed of the car = 48km/h.
RELATED QUESTIONS
A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.
If two pipes function simultaneously, a reservoir will be filled in 12 hours. One pipe fills the reservoir 10 hours faster than the other. How many hours will the second pipe take to fill the reservoir?
Solve:
(a + b)2x2 – (a + b)x – 6 = 0; a + b ≠ 0
Solve the following quadratic equations by factorization:
`(3x-2)/(2x-3)=(3x-8)/(x+4)`
The sum of two natural numbers is 9 and the sum of their reciprocals is `1/2`. Find the numbers .
Determine whether the values given against the quadratic equation are the roots of the equation.
2m2 – 5m = 0, m = 2, `5/2`
Find the discriminant of the quadratic equation \[3\sqrt{3} x^2 + 10x + \sqrt{3} = 0\].
A shopkeeper buys a certain number of books for Rs 960. If the cost per book was Rs 8 less, the number of books that could be bought for Rs 960 would be 4 more. Taking the original cost of each book to be Rs x, write an equation in x and solve it to find the original cost of each book.
Find the roots of the following quadratic equation by the factorisation method:
`3sqrt(2)x^2 - 5x - sqrt(2) = 0`
If the sum of the roots of the quadratic equation ky2 – 11y + (k – 23) = 0 is `13/21` more than the product of the roots, then find the value of k.