English
Karnataka Board PUCPUC Science Class 11

A Charge of 3.14 × 10−6 C is Distributed Uniformly Over a Circular Ring of Radius 20.0 Cm. the Ring Rotates About Its Axis with an Angular Velocity of 60.0 Rad S−1. - Physics

Advertisements
Advertisements

Question

A charge of 3.14 × 10−6 C is distributed uniformly over a circular ring of radius 20.0 cm. The ring rotates about its axis with an angular velocity of 60.0 rad s−1. Find the ratio of the electric field to the magnetic field at a point on the axis at a distance of 5.00 cm from the centre.

Short Note

Solution

Given:
Magnitude of charges, q =  3.14 × 10−6 C
Radius of the ring, 

\[r = 20 \text{ cm } = 20 \times {10}^{- 2} \] m
Angular velocity of the ring
\[\omega = 60\]  rad/s
Time for 1 revolution = \[\frac{2\pi}{60}\]
 
\[\therefore \text{ Current, i }= \frac{q}{t} = \frac{3 . 14 \times {10}^{- 6} \times 60}{2\pi}\]
\[ = 30 \times {10}^{- 6} A\]
In the figure, E1 and E2 denotes the electric field at a point on the axis at a distance of 5.00 cm from the centre due to small element 1 and 2 of the ring respectively.
E is the resultant electric field due to the entire ring at a point on the axis at a distance of 5.00 cm from the centre.
The electric field at a point on the axis at a distance x from the centre is given by

\[E   =   \frac{xq}{4\pi \epsilon_0 ( x^2 + r^2 )^\frac{3}{2}}\] 

The magnetic field at a point on the axis at a distance x from the centre is given by

\[B = \frac{\mu_0}{2}\frac{i r^2}{( x^2 + r^2 )^{3/2}}\]
\[\frac{E}{B} = \frac{\frac{xq}{4\pi \epsilon_0 ( x^2 + r^2 )^\frac{3}{2}}}{\frac{\mu_0}{2}\frac{i r^2}{( x^2 + r^2 )^{3/2}}}\]
\[ = \frac{9 \times {10}^9 \times 3 . 14 \times {10}^{- 6} \times 2 \times (20 . 6 )^3 \times {10}^{- 6}}{25 \times {10}^{- 4} \times 4\pi \times {10}^{- 14} \times 12}\]
\[ = \frac{9 \times 3 . 14 \times 2 \times (20 . 6 )^3}{25 \times 4\pi \times 12}\]
\[ = 1 . 88 \times {10}^{15} \] m/s
shaalaa.com
Magnetic Field on the Axis of a Circular Current Loop
  Is there an error in this question or solution?
Chapter 13: Magnetic Field due to a Current - Exercises [Page 252]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 13 Magnetic Field due to a Current
Exercises | Q 46 | Page 252

RELATED QUESTIONS

Two identical circular coils, P and Q each of radius R, carrying currents 1 A and √3A respectively, are placed concentrically and perpendicular to each other lying in the XY and YZ planes. Find the magnitude and direction of the net magnetic field at the centre of the coils.


Use Biot-Savart's law to find the expression for the magnetic field due to a circular loop of radius 'r' carrying current 'I', at its centre ?


A current-carrying, straight wire is kept along the axis of a circular loop carrying a current. This straight wire


A steady electric current is flowing through a cylindrical conductor.
(a) The electric field at the axis of the conductor is zero.
(b) The magnetic field at the axis of the conductor is zero.
(c) The electric field in the vicinity of the conductor is zero.
(d) The magnetic field in the vicinity of the conductor is zero.


Figure shows a square loop ABCD with edge-length a. The resistance of the wire ABC is r and that of ADC is 2r. Find the magnetic field B at the centre of the loop assuming uniform wires. 


Two circular coils of radii 5.0 cm and 10 cm carry equal currents of 2.0 A. The coils have 50 and 100 turns respectively and are placed in such a way that their planes as well as the centres coincide. If the outer coil is rotated through 90° about a diameter, Find the  magnitude of the magnetic field B at the common centre of the coils if the currents in the coils are (a) in the same sense (b) in the opposite sense.


A circular loop of radius 20 cm carries a current of 10 A. An electron crosses the plane of the loop with a speed of 2.0 × 106 m s−1. The direction of motion makes an angle of 30° with the axis of the circle and passes through its centre. Find the magnitude of the magnetic force on the electron at the instant it crosses the plane.


A circular loop of radius r carrying a current i is held at the centre of another circular loop of radius R(>>r) carrying a current I. The plane of the smaller loop makes an angle of 30° with that of the larger loop. If the smaller loop is held fixed in this position by applying a single force at a point on its periphery, what would be the minimum magnitude of this force? 


A circular coil of 200 turns has a radius of 10 cm and carries a current of 2.0 A. (a) Find the magnitude of the magnetic field \[\vec{B}\] at the centre of the coil. (b) At what distance from the centre along the axis of the coil will the field B drop to half its value at the centre?

\[(\sqrt[3]{4} = 1 \cdot 5874 . . . )\]

A circular loop of radius 4.0 cm is placed in a horizontal plane and carries an electric current of 5.0 A in the clockwise direction as seen from above. Find the magnetic field (a) at a point 3.0 cm above the centre of the loop (b) at a point 3.0 cm below the centre of the loop.


The magnitude of the magnetic field due to a circular coil of radius R carrying a current I at an axial distance x from the centre is ______.


The magnetic field at a distance r from a long wire carrying current I is 0.4 tesla. The magnetic field at a distance 2 r is ______.


If we double the radius of a coil keeping the current through it unchanged, then the magnetic field at any point at a large distance from the centre becomes approximately.


A current is passed through a straight wire. The magnetic field established around it has its lines of force ______.

Magnetic field at the centre of a circular coil of radius r, through which a current I flows is ______.

A small square loop of wire of side l is placed inside a large square loop of side L (L >> l). The loop is coplanar and their centers coincide. The mutual inductance of the system is proportional to is


If ar and at represent radial and tangential accelerations, the motion of the particle will be uniformly circular, if:


An electron is projected along the axis of a circular conductor carrying some current. Electron ______


Two horizontal thin long parallel wires, separated by a distance r carry current I each in the opposite directions. The net magnetic field at a point midway between them will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×