Advertisements
Advertisements
Question
A chessboard contains 64 equal square and the area of each square is 6.25cm2. A 2cm wide border is left inside of the board. Find the length of the side of the chessboard.
Solution
Area of each of the 64 squares of the chessboard = 6.25cm2
So, Side of each of the 64 squares of the chess board = 2.5cm
The sum of Sides of each of the 8 squares on one side of the chess board
= 8 x 2.5
= 20cm
The border on each side is 2cm.
So, the length of the board
= 20 + 4
= 24cm.
APPEARS IN
RELATED QUESTIONS
Find the area of an isosceles triangle ABC in which AB = AC = 6 cm, ∠A = 90°. Also, find the length of perpendicular from A to BC.
Find the perimeter of an equilateral triangle whose area is `16sqrt(3)"cm"`.
In a right-angled triangle PQR right-angled at Q, QR = x cm, PQ = (x + 7) cm and area = 30 cm2. Find the sides of the triangle.
In a right-angled triangle ABC, if ∠B = 90°, AB - BC = 2 cm; AC - BC = 4 and its perimeter is 24 cm, find the area of the triangle.
Find the area of an isosceles triangle whose perimeter is 72cm and the base is 20cm.
Find the base of an isosceles triangle whose area is 192cm2 and the length of one of the equal sides is 20cm.
A wire when bent in the form of a square encloses an area of 16 cm2. Find the area enclosed by it when the same wire is bent in the form of an equilateral triangle
In an isosceles triangle, two angles are always ______.
In an isosceles triangle, angles opposite to equal sides are ______.
Two line segments are congruent, if they are of ______ lengths.