Advertisements
Advertisements
Question
Find the area of an isosceles triangle whose perimeter is 72cm and the base is 20cm.
Solution
The sum of the equal sides of the given Isosceles triangle
= 72 - 20
= 52
So, each the equal sides of the given Isosceles triangle =
`(1)/(2)(52)`
= 26cm
We know that, Area of a Triangle whose sides are a, b, and c and semiperimeter is s is given by `sqrt("s"("s" - "a")("s" - "b")("s" - "c")); "s" = ("a" + "b" + "c")/(2)`
Here, sides are 26cm, 26cm and 20cm
s = `"P"/(2)`
= `(72)/(2)`
= 36
Area
= `sqrt(36(36 - 26)(36 - 26)(36 - 20)`
= `sqrt(36(10)(10)(16)`
= 6 x 10 x 4
= 240cm2.
APPEARS IN
RELATED QUESTIONS
The base of an isosceles triangle is 24 cm and its area is 192 sq. cm. Find its perimeter.
Find the area of an equilateral triangle of side 20 cm.
Find the perimeter of an equilateral triangle whose area is `16sqrt(3)"cm"`.
Find the area of the shaded region in the figure as shown, in which DPQS is an equilateral triangle and ∠PQR = 90°.
In a right-angled triangle PQR right-angled at Q, QR = x cm, PQ = (x + 7) cm and area = 30 cm2. Find the sides of the triangle.
Each of the equal sides of an isosceles triangle is 4 cm greater than its height. If the base of the triangle is 24 cm; calculate the perimeter and the area of the triangle.
If in an isosceles triangle, each of the base angles is 40°, then the triangle is ______.
In an isosceles triangle, two angles are always ______.
In an isosceles triangle, angles opposite to equal sides are ______.
Two line segments are congruent, if they are of ______ lengths.