Advertisements
Advertisements
Question
A circular coil of cross-sectional area 200 cm2 and 20 turns is rotated about the vertical diameter with angular speed of 50 rad s−1 in a uniform magnetic field of magnitude 3.0 × 10−2T. Calculate the maximum value of the current in the coil.
Solution
Here, A = 200 cm2
N=20
ω = 50 rad/s
B = 3.0× 10−2 T
for maximum current emf induced should be maximum.
So, for maximum emf sinωt in e = NAB ω sinωt should be 1.
Hence, e = NABω
`e = 20 × 200/10000 × 50 × 3 × 10^-2 `
`e= 0.6 V`
Since, resistance of the circular loop is not given, let us consider its resistance to be R.
Therefore, current I in the coil is
`I = 0.6/R A`
RELATED QUESTIONS
Two circular coils A and B are placed closed to each other. If the current in the coil A is changed, will some current be induced in the coil B? Give reason.
A rectangular wire loop of sides 8 cm and 2 cm with a small cut is moving out of a region of uniform magnetic field of magnitude 0.3 T directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is 1 cm s−1 in a direction normal to the
- longer side,
- shorter side of the loop?
For how long does the induced voltage last in each case?
Consider the energy density in a solenoid at its centre and that near its ends. Which of the two is greater?
Fill in the blanks by writing (i) Only soft iron, (ii) Only steel, (iii) Both soft-iron and steel for the material of core and/or magnet.
A. C. generator______.
List two ways of increasing the strength of an electromagnet if the material of the electromagnet is fixed.
State Fleming’s right-hand rule.
A square coil of side 30 cm with 500 turns is kept in a uniform magnetic field of 0.4 T. The plane of the coil is inclined at an angle of 30° to the field. Calculate the magnetic flux through the coil.
A coil of 200 turns carries a current of 4 A. If the magnetic flux through the coil is 6 x 10-5 Wb, find the magnetic energy stored in the medium surrounding the coil.
For making a strong electromagnet the material of the core should be ______.
In the given circuit, initially switch S1 is closed and S2 and S3 are open. After charging of capacitor, at t = 0, S1 is open and S2 and S3 are closed. If the relation between inductance capacitance and resistance is L = 4CR2 then the time (in sec) after which current passing through capacitor and inductor will be same is ______ × 10-4 N. (Given R = ℓn(2)mΩ, L = 2mH)