English

A Company is Making Two Products a and B. the Cost of Producing One Unit of Products .The Company Wants to Minimize the Cost of Production by Satisfying the Given Requirements. - Mathematics

Advertisements
Advertisements

Question

A company is making two products A and B. The cost of producing one unit of products A and B are Rs 60 and Rs 80 respectively. As per the agreement, the company has to supply at least 200 units of product B to its regular customers. One unit of product  A  requires one machine hour whereas product B has machine hours available abundantly within the company. Total machine hours available for product A are 400 hours. One unit of each product A and B requires one labour hour each and total of 500 labour hours are available. The company wants to minimize the cost of production by satisfying the given requirements. Formulate the problem as a LPP.

Sum

Solution

Let the company produces x units of product A and y units of product B.
Since, each unit of product A costs Rs 60 and each unit of product B costs Rs 80.Therefore, x units of product A and y units of product B will cost Rs 60x and Rs 80y respectively.
Let Z denotes the total cost.

∴ Z = Rs (60x + 80y)
Also, one unit of product A requires one machine hour.
The total machine hours available with the company for product A are 400 hours.
Therefore, \[x \leq 400\]

This is our first constraint
Also,one unit of product A and B require 1 labour hour each and there are a total of 500 labours hours.
Thus, \[x + y \leq 500\]
​This is our second constraint.
Since, x and y are non negative integers, therefore  

\[x, y \geq\] 0 Also, as per agreement, the company has to supply atleast 200 units of product B to its regular customers.
\[\therefore y \geq 200\]  Hence, the required LPP is  as follows:
Minimize Z = 60x + 80y
subject to  x \[\leq\] 400
x +y  \[\leq\] 500 
\[y \geq 200\] 
 \[x, y \geq\]  0
shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Linear programming - Exercise 30.1 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 30 Linear programming
Exercise 30.1 | Q 2 | Page 14

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A rubber company is engaged in producing three types of tyres AB and C. Each type requires processing in two plants, Plant I and Plant II. The capacities of the two plants, in number of tyres per day, are as follows:

Plant A B C
I 50 100 100
II 60 60 200

The monthly demand for tyre AB and C is 2500, 3000 and 7000 respectively. If plant I costs Rs 2500 per day, and plant II costs Rs 3500 per day to operate, how many days should each be run per month to minimize cost while meeting the demand? Formulate the problem as LPP.


A manufacturer can produce two products, A and B, during a given time period. Each of these products requires four different manufacturing operations: grinding, turning, assembling and testing. The manufacturing requirements in hours per unit of products A and B are given below.

  A B
Grinding 1 2
Turning 3 1
Assembling 6 3
Testing 5 4


The available capacities of these operations in hours for the given time period are: grinding 30; turning 60, assembling 200; testing 200. The contribution to profit is Rs 20 for each unit of A and Rs 30 for each unit of B. The firm can sell all that it produces at the prevailing market price. Determine the optimum amount of A and B to produce during the given time period. Formulate this as a LPP.


A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
 

  Product A Product B Weekly capacity
Department 1 3 2 130
Department 2 4 6 260
Selling price per unit Rs 25 Rs 30  
Labour cost per unit Rs 16 Rs 20  
Raw material cost per unit Rs 4 Rs 4  


The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.


A firm has to transport at least 1200 packages daily using large vans which carry 200 packages each and small vans which can take 80 packages each. The cost of engaging each large van is ₹400 and each small van is ₹200. Not more than ₹3000 is to be spent daily on the job and the number of large vans cannot exceed the number of small vans. Formulate this problem as a LPP given that the objective is to minimize cost


The solution set of the inequation 2x + y > 5 is


Objective function of a LPP is


Which of the following sets are convex?


Let X1 and X2 are optimal solutions of a LPP, then


The maximum value of Z = 4x + 2y subjected to the constraints 2x + 3y ≤ 18, x + y ≥ 10 ; xy ≥ 0 is


The optimal value of the objective function is attained at the points


The objective function Z = 4x + 3y can be maximised subjected to the constraints 3x + 4y ≤ 24, 8x + 6y ≤ 48, x ≤ 5, y ≤ 6; xy ≥ 0


If the constraints in a linear programming problem are changed


Which of the following is not a convex set?


A company manufactures two types of toys A and B. A toy of type A requires 5 minutes for cutting and 10 minutes for assembling. A toy of type B requires 8 minutes for cutting and 8 minutes for assembling. There are 3 hours available for cutting and 4 hours available for assembling the toys in a day. The profit is ₹ 50 each on a toy of type A and ₹ 60 each on a toy of type B. How many toys of each type should the company manufacture in a day to maximize the profit? Use linear programming to find the solution. 


Feasible region is the set of points which satisfy ______.


The optimum value of the objective function of LPP occurs at the center of the feasible region.


Choose the correct alternative:

The constraint that in a college there are more scholarship holders in FYJC class (X) than in SYJC class (Y) is given by


Choose the correct alternative:

How does a constraint, “A washing machine can hold up to 8 kilograms of cloths (X)” can be given?


Ganesh owns a godown used to store electronic gadgets like refrigerator (x) and microwave (y). If the godown can accommodate at most 75 gadgets, then this can be expressed as a constraint by ______


Determine the maximum value of Z = 4x + 3y if the feasible region for an LPP is shown in figure


A manufacturing company makes two types of television sets; one is black and white and the other is colour. The company has resources to make at most 300 sets a week. It takes Rs 1800 to make a black and white set and Rs 2700 to make a coloured set. The company can spend not more than Rs 648000 a week to make television sets. If it makes a profit of Rs 510 per black and white set and Rs 675 per coloured set, how many sets of each type should be produced so that the company has maximum profit? Formulate this problem as a LPP given that the objective is to maximise the profit.


Minimise Z = 3x + 5y subject to the constraints:
x + 2y ≥ 10
x + y ≥ 6
3x + y ≥ 8
x, y ≥ 0


The corner points of the feasible region determined by the system of linear constraints are (0, 10), (5, 5), (15, 15), (0, 20). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both the points (15, 15) and (0, 20) is ______.


Feasible region (shaded) for a LPP is shown in the Figure Minimum of Z = 4x + 3y occurs at the point ______.


In maximization problem, optimal solution occurring at corner point yields the ____________.


A type of problems which seek to maximise (or, minimise) profit (or cost) form a general class of problems called.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×