Advertisements
Advertisements
Question
A cylindrical bucket, 32 cm high and with radius of base 18 cm, is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm. Find the radius and slant height of the heap.
Solution
Height (h1) of cylindrical bucket = 32 cm
Radius (r1) of circular end of bucket = 18 cm
Height (h2) of conical heap = 24 cm
Let the radius of the circular end of conical heap be r2.
The volume of sand in the cylindrical bucket will be equal to the volume of sand in the conical heap.
Volume of sand in the cylindrical bucket = Volume of sand in conical heap
`pixxr_1^2xxh_1=1/3pixxr_2^2xxh_2`
`pixx18^2xx32=1/3pixxr_2^2xx24`
`pixx18^2xx32= 1.3pixxr_2^2xx24`
`r_2^2= (3xx18^2xx32)/24 = 18^2 xx 4`
r2 = 18 x 2 = 36 cm
Slant height = `sqrt(36^2+24^2) = sqrt(12^2xx(3^2+2^2)) = 12sqrt13`
Therefore, the radius and slant height of the conical heap are 36 cm and
`12sqrt13` respectively
APPEARS IN
RELATED QUESTIONS
A metallic sphere of radius 4.2 cm is melted and recast into the shape of a cylinder of radius 6 cm. Find the height of the cylinder.
A well of diameter 3 m is dug 14 m deep. The soil taken out of it is spread evenly all around it to a width of 5 m to form an embankment. Find the height of the embankment ?
Two cones with same base radius 8 cm and height 15 cm are joined together along their bases. Find the surface area of the shape formed.
The diameters of the top and the bottom portions of a bucket are 42 cm and 28 cm respectively. If the height of the bucket is 24 cm, then the cost of painting its outer surface at the rate of 50 paise / cm2 is
If four times the sum of the areas of two circular faces of a cylinder of height 8 cm is equal to twice the curve surface area, then diameter of the cylinder is
If two solid-hemisphere s of same base radius r are joined together along their bases , then curved surface area of this new solid is
A cylindrical bucket, 32 cm high and with radius of base 18 cm, is filled with sand. This bucket is emptied out on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm, find the radius and slant height of the heap.
During conversion of a solid from one shape to another, the volume of the new shape will ______.
A solid cylinder of radius r and height h is placed over other cylinder of same height and radius. The total surface area of the shape so formed is 4πrh + 4πr2.
Water flows at the rate of 10m/minute through a cylindrical pipe 5 mm in diameter. How long would it take to fill a conical vessel whose diameter at the base is 40 cm and depth 24 cm?