English

A function f: ℝ→ℝ defined as f(x) = x2 − 4x + 5 is: - Mathematics

Advertisements
Advertisements

Question

A function f: `RR → RR` defined as f(x) = x2 − 4x + 5 is: 

Options

  • injective but not surjective

  • surjective but not injective

  • both injective and surjective

  • neither injective nor surjective

MCQ

Solution

neither injective nor surjective

Explanation:

Given, f: `RR → RR`

f(x) = x2 − 4x + 5

One-One (Injective)

f(x1) = f(x2)

⇒ x12 − 4x1 + 5 = x12 − 4x2 + 5

⇒ x12 − x22 = 4(x1 − x2)

⇒ (x1 − x2) (x1 + x2) = 4(x1 − x2)

⇒ x1 + x2 = 4

⇒ x1 = 4 − x2

Thus, f(x) is not an injective mapping.

onto surjective

let y = x2 − 4x +5

⇒ y = (x − 2)2 + 1

⇒ y − 1 = (x − 2)2

⇒ x = `sqrt((y - 1)) + 2`

Thus, for any value of y < 1, x ∉ R. So, we don't have a pre-image for all y ∈ R in x ∈ R.

Thus, f(x) = x2 − 4x + 5 is not surjective.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Delhi Set - 2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×