Advertisements
Advertisements
Question
A hemi-spherical dome of a building needs to be painted. If the circumference of the base of
the dome is 17.6 cm, find the cost of painting it, given the cost of painting is Rs. 5 per l00
`cm^2`
Solution 1
Given that only the rounded surface of the dome to be painted, we would need to find the
curved surface area of the hemisphere to know the extent of painting that needs to be done.
Now, circumference of the dome =17.6m.
Therefore, 17.6=2πr.
`2× 22/7r= 17.6m.`
So, the radius of the dome = 17.6× `7/(2× 22)`
m=2.8m
The curved surface area of the dome = `2πr^2`
=`2× 22/7× 2.8× 2.8cm^2`
= `49.28m^2`
Now, cost of painting 100`cm^2` is Rs. 5.
So, cost of painting `1m^2`= Rs.500
Therefore, cost of painting the whole dome
=Rs. 500×49.28
=Rs. 24640 .
Solution 2
In the given problem, a hemispherical dome of the building needs to be painted. So, we need to find the surface area of the dome.
Here, we are given the circumference of the hemispherical dome as 17.6 m and as we know that circumference of the hemisphere is given by 2πr. So, we get
`2πr = 17.6`
`2(22/7)r = 17.6`
`r = 17.6 (7/22)(1/2)`
= 2.8
So, now we find the surface area of the hemispherical dome.
` "surface area" = 2 π r^2`
` =2(22/7)(2.8)^2`
= 49.28
So, the curved surface area of the dome is 49.28 m2
Since the rate of the painting is given in cm2, we have to convert the surface area from m2 to cm2.
So, we get
Curved surface area = `(49.28)(10000)cm^2`
= 492800 cm2
Now, the rate of painting per 100 cm2 = Rs 5
The rate of painting per 1 cm2 = `5/100`
So, the cost of painting the dome = `(5/100) (492800)`
=24640
Therefore, the cost of painting the hemispherical dome of the building is Rs 24640 .
APPEARS IN
RELATED QUESTIONS
Find the surface area of a sphere of radius 10.5 cm.
`["Assume "pi=22/7]`
Find the surface area of a sphere of diameter 14 cm.
`["Assume "pi=22/7]`
Find the total surface area of a hemisphere of radius 10 cm. [Use π = 3.14]
The surface area of a solid sphere is increased by 12% without changing its shape. Find the percentage increase in its:
- radius
- volume
The total area of a solid metallic sphere is 1256 cm2. It is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate :
- the radius of the solid sphere.
- the number of cones recast. [Take π = 3.14]
A hollow sphere of internal and external radii 6 cm and 8 cm respectively is melted and recast into small cones of base radius 2 cm and height 8 cm. Find the number of cones.
Spherical marbles of diameter 1.4 cm are dropped into beaker containing some water and are fully submerged. The diameter of the beaker is 7 cm. Find how many marbles have been dropped in it if the water rises by 5.6 cm.
If a hollow sphere of internal and external diameters 4 cm and 8 cm respectively melted into a cone of base diameter 8 cm, then find the height of the cone.
The ratio of the total surface area of a sphere and a hemisphere of same radius is
If a sphere is inscribed in a cube, then the ratio of the volume of the sphere to the volume of the cube is