Advertisements
Advertisements
Question
The surface area of a solid sphere is increased by 12% without changing its shape. Find the percentage increase in its:
- radius
- volume
Solution
Let the radius of the sphere be 'r'.
Total surface area the sphere, S = 4πr2
New surface area of the sphere, S’
= `4pir^2 + 21/100 xx 4pir^2`
= `121/100 4pir^2`
i. Let the new radius be r1
`S^I = 4pir_1^2`
`S^I = 121/100 4pir^2`
`=> 4pir_1^2 = 121/100 4pir^2`
`=> r_1^2 = 121/100r^2`
`=> r_1 = 11/10r`
`=> r_1 = r + r/10`
`=> r_1 - r = r/10`
`=>` Change in radius = `r/10`
Percentage change in radius = `"Change in radius"/"Original in radius" xx 100`
= `(r/10)/r xx 100`
= 10
Percentage change in radius = 10%
ii. Let the volume of the sphere be V
Let the new volume of the sphere be V'.
`V = 4/3pir^3`
`V^I = 4/3pir_1^3`
`=> V^I = 4/3pi((11r)/10)^3`
`=> V^I = 4/3pi1331/1000 r^3`
`=> V^I = 4/3pir^3 1331/1000 `
`=> V^I = 1331/1000 V`
`=> V^I = V + 1331/1000 V`
`=> V^I - V = 331/1000 V`
∴ Change in volume = `331/1000 V `
Percentage change in volume = `"Change in volume"/"Original volume" xx 100`
= `(331/1000V)/V xx 100`
= `331/10`
= 33.1
Percentage change in volume = 33.1%
APPEARS IN
RELATED QUESTIONS
The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
Two solid spheres of radii 2 cm and 4 cm are melted and recast into a cone of height 8 cm. Find the radius of the cone so formed.
Find the surface area of a sphere of radius 5.6 cm .
The diameter of the moon is approximately one fourth of the diameter of the earth. Find the
ratio of their surface areas.
A hemi-spherical dome of a building needs to be painted. If the circumference of the base of
the dome is 17.6 cm, find the cost of painting it, given the cost of painting is Rs. 5 per l00
`cm^2`
How many balls each of radius 1 cm can be made by melting a bigger ball whose diameter is 8 cm?
If the number of square centimeters on the surface of a sphere is equal to the number of cubic centimeters in its volume, what is the diameter of the sphere?
A solid rectangular block of metal 49 cm by 44 cm by 18 cm is melted and formed into a solid sphere. Calculate the radius of the sphere.
Find the maximum volume of a cone that can be carved out of a solid hemisphere of radius r cm.
A largest sphere is to be carved out of a right circular cylinder of radius 7 cm and height 14 cm. Find the volume of the sphere.
The ratio of the total surface area of a sphere and a hemisphere of same radius is
If the ratio of volumes of two spheres is 1 : 8, then the ratio of their surface areas is
Find the surface area and volume of sphere of the following radius. (π = 3.14 )
9 cm
Find the radius of the sphere whose surface area is equal to its volume .
A hemispherical bowl of internal radius 9 cm is full of liquid. This liquid is to be filled into conical shaped small containers each of diameter 3 cm and height 4 cm. How many containers are necessary to empty the bowl?
Find the volume and surface area of a sphere of diameter 21 cm.
The radius of two spheres are in the ratio of 1 : 3. Find the ratio between their volume.
The radius of a sphere increases by 25%. Find the percentage increase in its surface area
The radius of a hemispherical balloon increases from 6 cm to 12 cm as air is being pumped into it. The ratios of the surface areas of the balloon in the two cases is ______.