Advertisements
Advertisements
प्रश्न
The surface area of a solid sphere is increased by 12% without changing its shape. Find the percentage increase in its:
- radius
- volume
उत्तर
Let the radius of the sphere be 'r'.
Total surface area the sphere, S = 4πr2
New surface area of the sphere, S’
= `4pir^2 + 21/100 xx 4pir^2`
= `121/100 4pir^2`
i. Let the new radius be r1
`S^I = 4pir_1^2`
`S^I = 121/100 4pir^2`
`=> 4pir_1^2 = 121/100 4pir^2`
`=> r_1^2 = 121/100r^2`
`=> r_1 = 11/10r`
`=> r_1 = r + r/10`
`=> r_1 - r = r/10`
`=>` Change in radius = `r/10`
Percentage change in radius = `"Change in radius"/"Original in radius" xx 100`
= `(r/10)/r xx 100`
= 10
Percentage change in radius = 10%
ii. Let the volume of the sphere be V
Let the new volume of the sphere be V'.
`V = 4/3pir^3`
`V^I = 4/3pir_1^3`
`=> V^I = 4/3pi((11r)/10)^3`
`=> V^I = 4/3pi1331/1000 r^3`
`=> V^I = 4/3pir^3 1331/1000 `
`=> V^I = 1331/1000 V`
`=> V^I = V + 1331/1000 V`
`=> V^I - V = 331/1000 V`
∴ Change in volume = `331/1000 V `
Percentage change in volume = `"Change in volume"/"Original volume" xx 100`
= `(331/1000V)/V xx 100`
= `331/10`
= 33.1
Percentage change in volume = 33.1%
APPEARS IN
संबंधित प्रश्न
A certain number of metallic cones, each of radius 2 cm and height 3 cm are melted and recast into a solid sphere of radius 6 cm. Find the number of cones.
A solid sphere of radius 15 cm is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate the number of cones recast.
A solid cone of radius 5 cm and height 8 cm is melted and made into small spheres of radius 0.5 cm. Find the number of spheres formed.
The surface area of a sphere is 2464 cm2, find its volume.
The volume of a sphere is 38808 cm3; find its diameter and the surface area.
A largest sphere is to be carved out of a right circular cylinder of radius 7 cm and height 14 cm. Find the volume of the sphere.
The diameter of a sphere is 6 cm. It is melted and drawn into a wire of diameter 0.2 cm. Find the length of the wire.
Determine the ratio of the volume of a cube to that of a sphere which will exactly fit inside the cube.
The cross-section of a tunnel is a square of side 7 m surmounted by a semi-circle as shown in the adjoining figure. The tunnel is 80 m long.
Calculate:
- its volume,
- the surface area of the tunnel (excluding the floor) and
- its floor area.
The hollow sphere, in which the circus motor cyclist performs his stunts, has a diameter of 7 m. Find the area available to the motorcyclist for riding.
If a sphere is inscribed in a cube, find the ratio of the volume of cube to the volume of the sphere.
The total surface area of a hemisphere of radius r is
The largest sphere is cut off from a cube of side 6 cm. The volume of the sphere will be
If a solid sphere of radius 10 cm is moulded into 8 spherical solid balls of equal radius, then the surface area of each ball (in sq.cm) is
Find the radius of the sphere whose surface area is equal to its volume .
Find the volume of the hollow sphere whose inner diameter is 8 cm and the thickness of the material of which it is made is 1 cm .
A spherical cannon ball, 28 cm in diameter is melted and recast into a right circular conical mould, the base of which is 35 cm in diameter. Find the height of the cone, correct to one place of decimal.
A sphere cut out from a side of 7 cm cubes. Find the volume of this sphere?
The radius of a sphere is 10 cm. If we increase the radius 5% then how many % will increase in volume?
The radius of a hemispherical balloon increases from 6 cm to 12 cm as air is being pumped into it. The ratios of the surface areas of the balloon in the two cases is ______.