Advertisements
Advertisements
Question
A hollow sphere and a solid sphere having same mss and same radii are rolled down a rough inclined plane.
Options
The hollow sphere reaches the bottom first.
The solid sphere reaches the bottom with greater speed
The solid sphere reaches the bottom with greater kinetic energy.
The two spheres will reach the bottom with same linear momentum.
Solution
The solid sphere reaches the bottom with greater speed.
Acceleration of a sphere on the incline plane is given by
\[a = \frac{g\sin\theta}{1 + \frac{I_{COM}}{m r^2}}\]
\[ I_{COM}\] for a solid sphere \[= \frac{2}{5}m r^2 \]
\[\text{So, }a = \frac{g\sin\theta}{1 + \frac{2m r^2}{5m r^2}} = \frac{5}{7}g\sin\theta\]
\[I_{COM}\] for a hollow sphere \[= \frac{2}{3}m r^2 \]
\[\text{So, }a' = \frac{g\sin\theta}{1 + \frac{2m r^2}{3m r^2}} = \frac{3}{5}g\sin\theta\]
The acceleration of the solid sphere is greater; therefore, it will reach the bottom with greater speed.
APPEARS IN
RELATED QUESTIONS
Read each statement below carefully, and state, with reasons, if it is true or false;
The instantaneous speed of the point of contact during rolling is zero.
A stone of mass 2 kg is whirled in a horizontal circle attached at the end of 1.5m long string. If the string makes an angle of 30° with vertical, compute its period. (g = 9.8 m/s2)
Two uniform solid spheres having unequal masses and unequal radii are released from rest from the same height on a rough incline. If the spheres roll without slipping, ___________ .
In rear-wheel drive cars, the engine rotates the rear wheels and the front wheels rotate only because the car moves. If such a car accelerates on a horizontal road the friction
(a) on the rear wheels is in the forward direction
(b) on the front wheels is in the backward direction
(c) on the rear wheels has larger magnitude than the friction on the front wheels
(d) on the car is in the backward direction.
The following figure shows a smooth inclined plane fixed in a car accelerating on a horizontal road. The angle of incline θ is related to the acceleration a of the car as a = g tanθ. If the sphere is set in pure rolling on the incline, _____________.
A cylinder rolls on a horizontal place surface. If the speed of the centre is 25 m/s, what is the speed of the highest point?
A string is wrapped over the edge of a uniform disc and the free end is fixed with the ceiling. The disc moves down, unwinding the string. Find the downward acceleration of the disc.
A hollow sphere is released from the top of an inclined plane of inclination θ. (a) What should be the minimum coefficient of friction between the sphere and the plane to prevent sliding? (b) Find the kinetic energy of the ball as it moves down a length l on the incline if the friction coefficient is half the value calculated in part (a).
A pendulum consisting of a massless string of length 20 cm and a tiny bob of mass 100 g is set up as a conical pendulum. Its bob now performs 75 rpm. Calculate kinetic energy and increase in the gravitational potential energy of the bob. (Use π2 = 10)
The speed of a solid sphere after rolling down from rest without sliding on an inclined plane of vertical height h is, ______
What is the condition for pure rolling?
Discuss rolling on an inclined plane and arrive at the expression for acceleration.
A man is supported on a frictionless horizontal surface. It is attached to a string and rotates about a fixed centre at an angular velocity `omega`. The tension in the strings is F. If the length of string and angular velocity are doubled, the tension in string is now ____________.
A ring and a disc roll on horizontal surface without slipping with same linear velocity. If both have same mass and total kinetic energy of the ring is 4 J then total kinetic energy of the disc is ______.
The angular velocity of minute hand of a clock in degree per second is ______.
A uniform disc of radius R, is resting on a table on its rim.The coefficient of friction between disc and table is µ (Figure). Now the disc is pulled with a force F as shown in the figure. What is the maximum value of F for which the disc rolls without slipping?
A circular disc reaches from top to bottom of an inclined plane of length 'L'. When it slips down the plane, it takes time ' t1'. when it rolls down the plane, it takes time t2. The value of `t_2/t_1` is `sqrt(3/x)`. The value of x will be ______.
A disc of mass 4 kg rolls on a horizontal surface. If its linear speed is 3 m/ s, what is its total kinetic energy?