English
Karnataka Board PUCPUC Science Class 11

In Rear-wheel Drive Cars, the Engine Rotates the Rear Wheels and the Front Wheels Rotate Only Because the Car Moves. If Such a Car Accelerates on a Horizontal Road the Friction - Physics

Advertisements
Advertisements

Question

In rear-wheel drive cars, the engine rotates the rear wheels and the front wheels rotate only because the car moves. If such a car accelerates on a horizontal road the friction

(a) on the rear wheels is in the forward direction

(b) on the front wheels is in the backward direction

(c) on the rear wheels has larger magnitude than the friction on the front wheels

(d) on the car is in the backward direction.

Short Note

Solution

(a) on the rear wheels is in the forward direction

(b) on the front wheels is in the backward direction

(c) on the rear wheels has larger magnitude than the friction on the front wheels

 

Explanation:-

(a) On the rear wheels, friction force is in the forward direction because it favours the motion and accelerates the car in forward direction.

(b) Because of the movement of the car in forward direction, front wheels push the road in forward direction and in reaction, the road applies friction force in the backward direction.

(c) As the car is moving in forward direction, the rear wheels have larger magnitude of friction force (in forward direction) than on the front wheels.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Rotational Mechanics - MCQ [Page 195]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 10 Rotational Mechanics
MCQ | Q 12 | Page 195

RELATED QUESTIONS

Derive an expression for kinetic energy, when a rigid body is rolling on a horizontal surface without slipping. Hence find kinetic energy for a solid sphere.


Prove the result that the velocity v of translation of a rolling body (like a ring, disc, cylinder or sphere) at the bottom of an inclined plane of a height h is given by `v^2 = (2gh)/((1+k^2"/"R^2))`.

Using dynamical consideration (i.e. by consideration of forces and torques). Note is the radius of gyration of the body about its symmetry axis, and R is the radius of the body. The body starts from rest at the top of the plane.


Read each statement below carefully, and state, with reasons, if it is true or false;

For perfect rolling motion, work done against friction is zero.


If a rigid body of radius ‘R’ starts from rest and rolls down an inclined plane of inclination
‘θ’ then linear acceleration of body rolling down the plane is _______.


Can an object be in pure translation as well as in pure rotation?


A sphere can roll on a surface inclined at an angle θ if the friction coefficient is more than \[\frac{2}{7}g \tan\theta.\] Suppose the friction coefficient is \[\frac{1}{7}g\ tan\theta.\] If a sphere is released from rest on the incline, _____________ .


The following figure shows a smooth inclined plane fixed in a car accelerating on a horizontal road. The angle of incline θ is related to the acceleration a of the car as a = g tanθ. If the sphere is set in pure rolling on the incline, _____________.


A string is wrapped over the edge of a uniform disc and the free end is fixed with the ceiling. The disc moves down, unwinding the string. Find the downward acceleration of the disc.


A hollow sphere is released from the top of an inclined plane of inclination θ. (a) What should be the minimum coefficient of friction between the sphere and the plane to prevent sliding? (b) Find the kinetic energy of the ball as it moves down a length l on the incline if the friction coefficient is half the value calculated in part (a).


Discuss the interlink between translational, rotational and total kinetic energies of a rigid object rolls without slipping.


A disc of the moment of inertia Ia is rotating in a horizontal plane about its symmetry axis with a constant angular speed ω. Another disc initially at rest of moment of inertia Ib is dropped coaxially onto the rotating disc. Then, both the discs rotate with the same constant angular speed. The loss of kinetic energy due to friction in this process is, ______


What is the difference between sliding and slipping?


A uniform disc of mass 100g has a diameter of 10 cm. Calculate the total energy of the disc when rolling along with a horizontal table with a velocity of 20 cms-1. (take the surface of the table as reference)


A solid sphere of mass 1 kg and radius 10 cm rolls without slipping on a horizontal surface, with velocity of 10 emfs. The total kinetic energy of sphere is ______.


A solid spherical ball rolls on an inclined plane without slipping. The ratio of rotational energy and total energy is ______.


A uniform disc of radius R, is resting on a table on its rim.The coefficient of friction between disc and table is µ (Figure). Now the disc is pulled with a force F as shown in the figure. What is the maximum value of F for which the disc rolls without slipping?


A solid sphere of mass 2 kg is rolling on a frictionless horizontal surface with velocity 6m/s. It collides on the free end of an ideal spring whose other end is fixed. The maximum compression produced in the spring will be ______.

(Force constant of the spring = 36 N/m)


The angular displacement of a particle in 6 sec on a circle with angular velocity `pi/3` rad/sec is ______.


A disc of mass 4 kg rolls on a horizontal surface. If its linear speed is 3 m/ s, what is its total kinetic energy?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×