हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

In Rear-wheel Drive Cars, the Engine Rotates the Rear Wheels and the Front Wheels Rotate Only Because the Car Moves. If Such a Car Accelerates on a Horizontal Road the Friction - Physics

Advertisements
Advertisements

प्रश्न

In rear-wheel drive cars, the engine rotates the rear wheels and the front wheels rotate only because the car moves. If such a car accelerates on a horizontal road the friction

(a) on the rear wheels is in the forward direction

(b) on the front wheels is in the backward direction

(c) on the rear wheels has larger magnitude than the friction on the front wheels

(d) on the car is in the backward direction.

टिप्पणी लिखिए

उत्तर

(a) on the rear wheels is in the forward direction

(b) on the front wheels is in the backward direction

(c) on the rear wheels has larger magnitude than the friction on the front wheels

 

Explanation:-

(a) On the rear wheels, friction force is in the forward direction because it favours the motion and accelerates the car in forward direction.

(b) Because of the movement of the car in forward direction, front wheels push the road in forward direction and in reaction, the road applies friction force in the backward direction.

(c) As the car is moving in forward direction, the rear wheels have larger magnitude of friction force (in forward direction) than on the front wheels.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Rotational Mechanics - MCQ [पृष्ठ १९५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 10 Rotational Mechanics
MCQ | Q 12 | पृष्ठ १९५

संबंधित प्रश्न

Read each statement below carefully, and state, with reasons, if it is true or false;

A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling) motion


A solid sphere of mass 1 kg rolls on a table with linear speed 2 m/s, find its total kinetic energy.


A stone of mass 2 kg is whirled in a horizontal circle attached at the end of 1.5m long string. If the string makes an angle of 30° with vertical, compute its period. (g = 9.8 m/s2)


A sphere cannot roll on


A string is wrapped over the edge of a uniform disc and the free end is fixed with the ceiling. The disc moves down, unwinding the string. Find the downward acceleration of the disc.


A hollow sphere is released from the top of an inclined plane of inclination θ. (a) What should be the minimum coefficient of friction between the sphere and the plane to prevent sliding? (b) Find the kinetic energy of the ball as it moves down a length l on the incline if the friction coefficient is half the value calculated in part (a).


A solid sphere of mass 0⋅50 kg is kept on a horizontal surface. The coefficient of static friction between the surfaces in contact is 2/7. What maximum force can be applied at the highest point in the horizontal direction so that the sphere does not slip on the surface?


What is the condition for pure rolling?


Discuss rolling on an inclined plane and arrive at the expression for acceleration.


A uniform disc of mass 100g has a diameter of 10 cm. Calculate the total energy of the disc when rolling along with a horizontal table with a velocity of 20 cms-1. (take the surface of the table as reference)


A solid sphere rolls down from top of inclined plane, 7m high, without slipping. Its linear speed at the foot of plane is ______. (g = 10 m/s2)


The power (P) is supplied to rotating body having moment of inertia 'I' and angular acceleration 'α'. Its instantaneous angular velocity is ______.


A solid sphere is rolling on a frictionless surface with translational velocity 'V'. It climbs the inclined plane from 'A' to 'B' and then moves away from Bon the smooth horizontal surface. The value of 'V' should be ______.


The angular velocity of minute hand of a clock in degree per second is ______.


A 1000 kg car has four 10 kg wheels. When the car is moving, fraction of total K.E. of the car due to rotation of the wheels about their axles is nearly (Assume wheels be uniform disc)


A solid sphere of mass 2 kg is rolling on a frictionless horizontal surface with velocity 6m/s. It collides on the free end of an ideal spring whose other end is fixed. The maximum compression produced in the spring will be ______.

(Force constant of the spring = 36 N/m)


The kinetic energy and angular momentum of a body rotating with constant angular velocity are E and L. What does `(2E)/L` represent?


The angular displacement of a particle in 6 sec on a circle with angular velocity `pi/3` rad/sec is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×