English

Discuss the interlink between translational, rotational and total kinetic energies of a rigid object rolls without slipping. - Physics

Advertisements
Advertisements

Question

Discuss the interlink between translational, rotational and total kinetic energies of a rigid object rolls without slipping.

Short Note

Solution

Consider an object of the moment of inertia `I`, rolling uniformly.  If the frictional force on the body is large enough, the body rolls without slipping. Following quantities can be related,

v = Linear speed of the centre of mass

R = Radius of the body

ω = Angular speed of rotation of the body, `therefore omega="v"/R` for any particle

M = Mass of the body

K = Radius of gyration of the body `therefore I=MK^2`

Total kinetic energy of rolling = Translational K.E. + Rotational K.E.

∴ `E = 1/2M"v"^2+ 1/2 Iomega^2` 

`= 1/2M"v"^2+ 1/2(MK^2)("v"/R)^2`

`= 1/2 M"v"^2 (1 + K^2/R^2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Rotational Dynamics - Exercises [Page 24]

RELATED QUESTIONS

Derive an expression for kinetic energy, when a rigid body is rolling on a horizontal surface without slipping. Hence find kinetic energy for a solid sphere.


Read each statement below carefully, and state, with reasons, if it is true or false;

The instantaneous speed of the point of contact during rolling is zero.


Read each statement below carefully, and state, with reasons, if it is true or false;

For perfect rolling motion, work done against friction is zero.


Read each statement below carefully, and state, with reasons, if it is true or false;

A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling) motion


A solid sphere of mass 1 kg rolls on a table with linear speed 2 m/s, find its total kinetic energy.


If a rigid body of radius ‘R’ starts from rest and rolls down an inclined plane of inclination
‘θ’ then linear acceleration of body rolling down the plane is _______.


Can an object be in pure translation as well as in pure rotation?


Two uniform solid spheres having unequal masses and unequal radii are released from rest from the same height on a rough incline. If the spheres roll without slipping, ___________ .


A hollow sphere and a solid sphere having same mss and same radii are rolled down a rough inclined plane.


In rear-wheel drive cars, the engine rotates the rear wheels and the front wheels rotate only because the car moves. If such a car accelerates on a horizontal road the friction

(a) on the rear wheels is in the forward direction

(b) on the front wheels is in the backward direction

(c) on the rear wheels has larger magnitude than the friction on the front wheels

(d) on the car is in the backward direction.


The following figure shows a smooth inclined plane fixed in a car accelerating on a horizontal road. The angle of incline θ is related to the acceleration a of the car as a = g tanθ. If the sphere is set in pure rolling on the incline, _____________.


A string is wrapped over the edge of a uniform disc and the free end is fixed with the ceiling. The disc moves down, unwinding the string. Find the downward acceleration of the disc.


A solid sphere of mass 0⋅50 kg is kept on a horizontal surface. The coefficient of static friction between the surfaces in contact is 2/7. What maximum force can be applied at the highest point in the horizontal direction so that the sphere does not slip on the surface?


Answer in Brief:

A rigid object is rolling down an inclined plane derive the expression for the acceleration along the track and the speed after falling through a certain vertical distance.


A pendulum consisting of a massless string of length 20 cm and a tiny bob of mass 100 g is set up as a conical pendulum. Its bob now performs 75 rpm. Calculate kinetic energy and increase in the gravitational potential energy of the bob. (Use π2 = 10)


The speed of a solid sphere after rolling down from rest without sliding on an inclined plane of vertical height h is, ______


What is the condition for pure rolling?


What is the difference between sliding and slipping?


Discuss rolling on an inclined plane and arrive at the expression for acceleration.


A uniform disc of mass 100g has a diameter of 10 cm. Calculate the total energy of the disc when rolling along with a horizontal table with a velocity of 20 cms-1. (take the surface of the table as reference)


A solid sphere rolls down from top of inclined plane, 7m high, without slipping. Its linear speed at the foot of plane is ______. (g = 10 m/s2)


A solid sphere of mass 1 kg and radius 10 cm rolls without slipping on a horizontal surface, with velocity of 10 emfs. The total kinetic energy of sphere is ______.


A man is supported on a frictionless horizontal surface. It is attached to a string and rotates about a fixed centre at an angular velocity `omega`. The tension in the strings is F. If the length of string and angular velocity are doubled, the tension in string is now ____________.


The power (P) is supplied to rotating body having moment of inertia 'I' and angular acceleration 'α'. Its instantaneous angular velocity is ______.


A ring and a disc roll on horizontal surface without slipping with same linear velocity. If both have same mass and total kinetic energy of the ring is 4 J then total kinetic energy of the disc is ______.


A solid sphere is rolling on a frictionless surface with translational velocity 'V'. It climbs the inclined plane from 'A' to 'B' and then moves away from Bon the smooth horizontal surface. The value of 'V' should be ______.


The angular velocity of minute hand of a clock in degree per second is ______.


A 1000 kg car has four 10 kg wheels. When the car is moving, fraction of total K.E. of the car due to rotation of the wheels about their axles is nearly (Assume wheels be uniform disc)


A solid spherical ball rolls on an inclined plane without slipping. The ratio of rotational energy and total energy is ______.


A uniform disc of radius R, is resting on a table on its rim.The coefficient of friction between disc and table is µ (Figure). Now the disc is pulled with a force F as shown in the figure. What is the maximum value of F for which the disc rolls without slipping?


A circular disc reaches from top to bottom of an inclined plane of length 'L'. When it slips down the plane, it takes time ' t1'. when it rolls down the plane, it takes time t2. The value of `t_2/t_1` is `sqrt(3/x)`. The value of x will be ______.


Solid spherical ball is rolling on a frictionless horizontal plane surface about is axis of symmetry. The ratio of rotational kinetic energy of the ball to its total kinetic energy is ______.


A solid sphere of mass 2 kg is rolling on a frictionless horizontal surface with velocity 6m/s. It collides on the free end of an ideal spring whose other end is fixed. The maximum compression produced in the spring will be ______.

(Force constant of the spring = 36 N/m)


The kinetic energy and angular momentum of a body rotating with constant angular velocity are E and L. What does `(2E)/L` represent?


The angular displacement of a particle in 6 sec on a circle with angular velocity `pi/3` rad/sec is ______.


A disc of mass 4 kg rolls on a horizontal surface. If its linear speed is 3 m/ s, what is its total kinetic energy?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×