Advertisements
Advertisements
Question
A horizontal wire 20 m long extending from east to west is falling with a velocity of 10 m/s normal to the Earth’s magnetic field of 0.5 × 10−4 T. What is the value of induced emf in the wire?
Solution
Data: l = 20 m, v = 10 m/s, B = 0.5 × 10−4 T
The magnitude of the induced emf,
|e| = Blv = (0.5 × 10−4)(20)(10) = 10-2 V = 10 mV
RELATED QUESTIONS
In a Faraday disc dynamo, a metal disc of radius R rotates with an angular velocity ω about an axis perpendicular to the plane of the disc and passing through its center. The disc is placed in a magnetic field B acting perpendicular to the plane of the disc. Determine the induced emf between the rim and the axis of the disc.
A stiff semi-circular wire of radius R is rotated in a uniform magnetic field B about an axis passing through its ends. If the frequency of rotation of wire is f, calculate the amplitude of alternating emf induced in the wire.
A search coil having 2000 turns with area 1.5 cm2 is placed in a magnetic field of 0.60 T. The coil is moved rapidly out of the field in a time of 0.2 s. Calculate the induced emf in the search coil.
Calculate the induced emf between the ends of an axle of a railway carriage 1.75 m long traveling on level ground with a uniform velocity of 50 kmph. The vertical component of Earth's magnetic field (Bv) is 5 × 10-5 T.
A magnet is moved towards a coil (i) quickly (ii) slowly, then the induced e.m.f. is ______
The magnetic flux through a loop varies according to the relation Φ = 8t2 + 6t + 2, Φ is in milliweber and t is in second. What is the magnitude of the induced emf in the loop at t = 2 seconds?
Determine the motional emf induced in a straight conductor moving in a uniform magnetic field with constant velocity on the basis of Lorentz force.
Two coils have a mutual inductance of 0.01 H. The current in the first coil changes according to equation, I = 5 sin 200 πt. The maximum value of emf induced in the second coil is ________.
Three identical coils X, Y and Z are placed with their planes parallel to each other. Coils X and Z carry current as shown in the figure. Coils X and Y are fixed and coil Z is moved towards Y, then ______.
The area of a coil is 'A'. The coil is placed in a magnetic field which changes from 'B0' to 4B0' in time 't'. The magnitude of induced e.m.f. in the coil will be ____________.
Derive an expression for the emf induced in a straight conductor moving in a uniform magnetic field with constant velocity.
With the help of a neat labelled diagram, obtain an expression for the induced emf in a stationary coil in a changing magnetic field.