English
Karnataka Board PUCPUC Science Class 11

A Hydrogen Atom in Ground State Absorbs 10.2 Ev of Energy. the Orbital Angular Momentum of the Electron is Increased by - Physics

Advertisements
Advertisements

Question

A hydrogen atom in ground state absorbs 10.2 eV of energy. The orbital angular momentum of the electron is increased by

Options

  • 1.05 × 10−34 J s

  • 2.11 × 10−34 J s

  •  3.16 × 10−34 J s

  • 4.22 × 10−34 J s

MCQ

Solution

 1.05 × 10−34 J s

Let after absorption of energy, the hydrogen atom goes to the nth excited state.

Therefore, the energy absorbed can be written as

`10.2 = 13.6 xx (1/1^2 - 1/n^2)`

⇒ `10.2/13.6 = 1- 1/n^2`

`rArr = 1/(n^2) = (13.6 - 10.2)/13.6`

`rArr = 1/n^2 = 3.4/13.6`

`rArr n^2 = 4`

`rArr n = 2`

The orbital angular momentum of the electron in the nth state is given by

`L_n =(nh)/(2pi)`

Change in the angular momentum,

`DeltaL = (2h)/(2pi) - h/(2pi) = h/(2pi)`

`DeltaL = 1.05xx10^-34` Js

shaalaa.com
The Line Spectra of the Hydrogen Atom
  Is there an error in this question or solution?
Chapter 21: Bohr’s Model and Physics of Atom - MCQ [Page 383]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 21 Bohr’s Model and Physics of Atom
MCQ | Q 11 | Page 383

RELATED QUESTIONS

Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines the typical atomic size? Why is an atom not, say, a thousand times bigger than its typical size? The question had greatly puzzled Bohr before he arrived at his famous model of the atom that you have learnt in the text. To simulate what he might well have done before his discovery, let us play as follows with the basic constants of nature and see if we can get a quantity with the dimensions of length that is roughly equal to the known size of an atom (~ 10−10 m).

(a) Construct a quantity with the dimensions of length from the fundamental constants e, me, and c. Determine its numerical value.

(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic domain where c is not expected to play any role. This is what may have suggested Bohr to discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant h had already made its appearance elsewhere. Bohr’s great insight lay in recognising that h, me, and e will yield the right atomic size. Construct a quantity with the dimension of length from h, me, and e and confirm that its numerical value has indeed the correct order of magnitude.


If Bohr’s quantisation postulate (angular momentum = nh/2π) is a basic law of nature, it should be equally valid for the case of planetary motion also. Why then do we never speak of quantisation of orbits of planets around the sun?


Find the wavelength of the electron orbiting in the first excited state in hydrogen atom.


As one considers orbits with higher values of n in a hydrogen atom, the electric potential energy of the atom


An electron with kinetic energy 5 eV is incident on a hydrogen atom in its ground state. The collision


Calculate the smallest wavelength of radiation that may be emitted by (a) hydrogen, (b) He+ and (c) Li++.


A hydrogen atom emits ultraviolet radiation of wavelength 102.5 nm. What are the quantum numbers of the states involved in the transition?


(a) Find the first excitation potential of He+ ion. (b) Find the ionization potential of Li++ion.


A group of hydrogen atoms are prepared in n = 4 states. List the wavelength that are emitted as the atoms make transitions and return to n = 2 states.


Find the maximum Coulomb force that can act on the electron due to the nucleus in a hydrogen atom.


What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?


Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).


Show that the ratio of the magnetic dipole moment to the angular momentum (l = mvr) is a universal constant for hydrogen-like atoms and ions. Find its value. 


Electrons are emitted from an electron gun at almost zero velocity and are accelerated by an electric field E through a distance of 1.0 m. The electrons are now scattered by an atomic hydrogen sample in ground state. What should be the minimum value of E so that red light of wavelength 656.3 nm may be emitted by the hydrogen?


A hydrogen atom moving at speed υ collides with another hydrogen atom kept at rest. Find the minimum value of υ for which one of the atoms may get ionized.
The mass of a hydrogen atom = 1.67 × 10−27 kg.


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


The Balmer series for the H-atom can be observed ______.

  1. if we measure the frequencies of light emitted when an excited atom falls to the ground state.
  2. if we measure the frequencies of light emitted due to transitions between excited states and the first excited state.
  3. in any transition in a H-atom.
  4. as a sequence of frequencies with the higher frequencies getting closely packed.

Let En = `(-1)/(8ε_0^2) (me^4)/(n^2h^2)` be the energy of the nth level of H-atom. If all the H-atoms are in the ground state and radiation of frequency (E2 - E1)/h falls on it ______.

  1. it will not be absorbed at all.
  2. some of atoms will move to the first excited state.
  3. all atoms will be excited to the n = 2 state.
  4. no atoms will make a transition to the n = 3 state.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×