English
Karnataka Board PUCPUC Science Class 11

A Long Wire Carries a Current of 4.00 A. Find the Energy Stored in the Magnetic Field Inside a Volume of 1.00 Mm3 at a Distance of 10.0 Cm from the Wire. - Physics

Advertisements
Advertisements

Question

A long wire carries a current of 4.00 A. Find the energy stored in the magnetic field inside a volume of 1.00 mm3 at a distance of 10.0 cm from the wire.

Sum

Solution

Current flowing through the wire, i = 4.00 A

Volume of the region, V = 1 mm3

Distance of the region from the wire, d = 10 cm = 0.1 m

Magnetic field due to the current-carrying straight wire, \[B =\frac{\mu_0 i}{2\pi r}\]

The magnetic energy stored is given by

\[U = \frac{B^2 V}{2 \mu_0} = \frac{\mu_0^2 i^2}{4 \pi^2 r^2} \times \frac{1}{2 \mu_0} \times V\]

\[U = \frac{\mu_0 i^2}{4 \pi^2 r^2} \times \frac{1}{2} \times V\]

\[U = \frac{(4\pi \times {10}^{- 7} ) \times (4 )^2 \times (1 \times {10}^{- 9} )}{(4 \pi^2 \times {10}^{- 2} ) \times 2}\]

\[U = 2 . 55 \times  {10}^{- 14}   J\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Electromagnetic Induction - Exercises [Page 313]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 16 Electromagnetic Induction
Exercises | Q 93 | Page 313

RELATED QUESTIONS

Define the coefficient of self-induction.


Write the SI unit and dimention of of co-efficient of self induction


A toroidal solenoid with air core has an average radius of 15 cm, area of cross-section 12 cm2 and has 1200 turns. Calculate the self-inductance of the toroid. Assume the field to be uniform across the cross-section of the toroid.


The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of  the currents ?


Define self inductance. Write its S.I. units.


An average emf of 20 V is induced in an inductor when the current in it is changed from 2.5 A in one direction to the same value in the opposite direction in 0.1 s. Find the self-inductance of the inductor.


A coil having inductance 2.0 H and resistance 20 Ω is connected to a battery of emf 4.0 V. Find (a) the current at the instant 0.20 s after the connection is made and (b) the magnetic field energy at this instant.


Choose the correct option

A current through a coil of self-inductance 10 mH increases from 0 to 1 A in 0.1 s. What is the induced emf in the coil?


When a coil is connected to a D.C. source of e.m.f. 12 volt, then a current of 4 ampere flows in it. If the same coil is connected to a 12 volt, 25 cycle/s A.C sources, then the current flowing in it is 2.4 A. The self-inductance of the coil will be ______


The coefficient of self-inductance of a solenoid is 0.20 mH. If a core of soft iron of relative permeability 900 is inserted, then the coefficient of self-inductance will become nearly ______


A toroidal solenoid with air core has an average radius 'R', number of turns 'N' and area of cross-section 'A'. The self-inductance of the solenoid is (Neglect the field variation cross-section of the toroid)


Two coils of self inductances 2 mH and 8 mH are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is ______.


A coil is wound on a frame of rectangular cross-section. If all the linear dimensions of the frame are increased by a factor 2 and the number of turns per unit length of the coil remains the same, self-inductance of the coil increases by a factor of ______.


The self-inductance of a coil is a measure of ______.

If both the number of turns and core length of an inductor is doubled keeping other factors constant, then its self-inductance will be ______.


Consider an infinitely long wire carrying a current I(t), with `(dI)/(dt) = λ` = constant. Find the current produced in the rectangular loop of wire ABCD if its resistance is R (Figure).


Obtain an expression for the self inductance of a solenoid.


A toroid of a circular cross-section of radius 0.05 m has 2000 windings and a self-inductance of 0.04 H. What is (a) the current through the windings when the energy in its magnetic field is 2 × 10−6 J and (b) the central radius of the toroid?


What is meant by magnetic coupling coefficient?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×