Advertisements
Advertisements
Question
A parallel beam of light of wavelength 560 nm falls on a thin film of oil (refractive index = 1.4). What should be the minimum thickness of the film so that it strongly reflects the light?
Solution
Given:-
Wavelength of light used,
\[\lambda = 560 \times {10}^{- 9} m\]
Refractive index of the oil film, \[\mu = 1 . 4\]
Let the thickness of the film for strong reflection be t.
The condition for strong reflection is
\[2\mu t = \left( 2n + 1 \right)\frac{\lambda}{2}\]
\[ \Rightarrow t = \left( 2n + 1 \right)\frac{\lambda}{4\mu}\]
where n is an integer.
For minimum thickness, putting n = 0, we get
\[t = \frac{\lambda}{4\mu}\]
\[ = \frac{560 \times {10}^{- 9}}{4 \times 1 . 4}\]
\[ = {10}^{- 7} m = 100 nm\]
Therefore, the minimum thickness of the oil film so that it strongly reflects the light is 100 nm.
APPEARS IN
RELATED QUESTIONS
The wavelength of light in a medium is \[\lambda = \lambda_0 /\mu,\] where \[\lambda \] is the wavelength in vacuum. A beam of red light \[\left( \lambda_0 = 720\text{ nm} \right)\] enters water. The wavelength in water is \[\lambda = \lambda_0 /\mu = 540\text{ nm.}\] To a person under water, does this light appear green?
If we put a cardboard (say 20 cm × 20 cm) between a light source and our eyes, we can't see the light. But when we put the same cardboard between a sound source and out ear, we hear the sound almost clearly. Explain.
Light is _______________ .
The equation of a light wave is written as \[y = A \sin\left( kx - \omega t \right).\] Here, `y` represents _______ .
An amplitude modulated (AM) radio wave bends appreciably round the corners of a 1 m × 1 m board but a frequency modulated (FM) wave only bends negligibly. If the average wavelengths of the AM and FM waves are \[\lambda_a and \lambda_f,\]
Which of the following properties of light conclusively support the wave theory of light?
(a) Light obeys the laws of reflection.
(b) Speed of light in water is smaller than its speed in vacuum.
(c) Light shows interference.
(d) Light shows photoelectric effect.
When light propagates in vacuum, there is an electric field as well as a magnetic field. These fields ____________ .
(a) are constant in time
(b) have zero average value
(c) are perpendicular to the direction of propagation of light.
(d) are mutually perpendicular
Find the range of frequency of light that is visible to an average human being
\[\left( 400\text{ nm }< \lambda < 700\text{ nm}\right)\]
Two narrow slits emitting light in phase are separated by a distance of 1⋅0 cm. The wavelength of the light is \[5 \cdot 0 \times {10}^{- 7} m.\] The interference pattern is observed on a screen placed at a distance of 1.0 m. (a) Find the separation between consecutive maxima. Can you expect to distinguish between these maxima? (b) Find the separation between the sources which will give a separation of 1.0 mm between consecutive maxima.
A parallel beam of white light is incident normally on a water film 1.0 × 10−4 cm thick. Find the wavelengths in the visible range (400 nm − 700 nm) which are strongly transmitted by the film. Refractive index of water = 1.33.
Plane microwaves are incident on a long slit of width 5.0 cm. Calculate the wavelength of the microwaves if the first diffraction minimum is formed at θ = 30°.
The optical path of a ray of light of a given wavelength travelling a distance of 3 cm in flint glass having refractive index 1.6 is the same as that on travelling a distance x cm through a medium having a refractive index 1.25. Determine the value of x.
Choose the correct option:
In Young's double-slit experiment, a thin uniform sheet of glass is kept in front of the two slits, parallel to the screen having the slits. The resulting interference pattern will satisfy:
A parallel beam of green light of wavelength 550 nm passes through a slit of width 0.4 mm. The intensity pattern of the transmitted light is seen on a screen that is 40 cm away. What is the distance between the two first-order minima?
Monochromatic electromagnetic radiation from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is
(a) 500 nm (visible light)
(b) 50 µm (infrared radiation)
(c) 0.500 nm (X rays)?
Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then ______
The path difference between two waves meeting at a point is (11/4)λ. The phase difference between the two waves is ______
What is the relation between phase difference and Optical path in terms of speed of light in a vacuum?
A ray is an imaginary line ______.