English
Karnataka Board PUCPUC Science Class 11

A Particle is Acted Upon by a Force of Constant Magnitude Which is Always Perpendicular to the Velocity of the Plane. the Motion of the Particle Takes Place in a Plane. It Follows that - Physics

Advertisements
Advertisements

Question

A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the plane. The motion of the particle takes place in a plane. It follows that

(a) its velocity is constant
(b) its acceleration is constant
(c) its kinetic energy is constant
(d) it moves in a circular path.

Short Note

Solution

(c) its kinetic energy is constant
(d) it moves in a circular path.

When the force on a particle is always perpendicular to its velocity, the work done by the force on the particle is zero, as the angle between the force and velocity is 90° . So, kinetic energy of the particle will remain constant. The force acting perpendicular to the velocity of the particle provides centripetal acceleration that causes the particle to move in a circular path.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Work and Energy - MCQ [Page 132]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 8 Work and Energy
MCQ | Q 3 | Page 132

RELATED QUESTIONS

A lawyer alleges in court that the police had forced his client to issue a statement of confession. What kind of force is this ?


Figure shows a cart. Complete the table shown below.

Force on Force by Nature of the Force Direction
Cart

1
2
3
:

   
Horse

1
2
3
:

   
Driver

1
2
3
:

   

The sum of all electromagnetic forces between different particles of a system of charged particles is zero 


Calculate the force with which you attract the earth.


Two spherical bodies, each of mass 50 kg, are placed at a separation of 20 cm. Equal charges are placed on the bodies and it is found that the force of Coulomb repulsion equals the gravitational attraction in magnitude. Find the magnitude of the charge placed on either body.


A body builder exerts a force of 150 N against a bullworker and compresses it by 20 cm. Calculate the spring constant of the spring in the bullworker.


A satellite is projected vertically upwards from an earth station. At what height above the earth's surface will the force on the satellite due to the earth be reduced to half its value at the earth station? (Radius of the earth is 6400 km.)


A small block of mass m is kept on a rough inclined surface of inclination θ fixed in an elevator. the elevator goes up with a uniform velocity v and the block does not slide on the wedge. The work done by the force of friction on the block in time t will be 


A force \[F = \alpha + bx\]  acts on a particle in the x-direction, where a and b are constants. Find the work done by this force during a displacement from x = 0 to x = d. 

 
 

A particle of mass m moves on a straight line with its velocity varying with the distance travelled, according to the equation  \[\nu = a\sqrt{x}\] , where a is a constant. Find the total work done by all the forces during a displacement from \[x = 0 \text{ to } x - d\] .

 

A block of mass 2 kg kept at rest on an inclined plane of inclination 37° is pulled up the plane by applying a constant force of 20 N parallel to the incline. The force acts for one second.  Show that the work done by the applied force does not exceed 40 J.


A block of mass 2 kg kept at rest on an inclined plane of inclination 37° is pulled up the plane by applying a constant force of 20 N parallel to the incline. The force acts for one second. Find the work done by the force of gravity in that one second if the work done by the applied force is 40 J.


A block of mass 2.0 kg is pushed down an inclined plane of inclination 37° with a force of 20 N acting parallel to the incline. It is found that the block moves on the incline with an acceleration of 10 m/s2. If the block started from rest, find the work done (a) by the applied force in the first second, (b) by the weight of the block in the first second and (c) by the frictional force acting on the block in the first second. Take g = 10 m/s2.


In a children's park, there is a slide which has a total length of 10 m and a height of 8⋅0 m . A vertical ladder is provided to reach the top. A boy weighing 200 N climbs up the ladder to the top of the slide and slides down to the ground. The average friction offered by the slide is three tenth of his weight. Find (a) the work done by the ladder on the boy as he goes up; (b) the work done by the slide on the boy as he comes down. Neglect any work done by forces inside the body of the boy


A uniform chain of mass m and length l overhangs a table with its two third part on the table. Find the work to be done by a person to put the hanging part back on the table.

 

A particle of mass m is kept on a fixed, smooth sphere of radius R at a position where the radius through the particle makes an angle of 30° with the vertical. The particle is released from this position. (a) What is the force exerted by the sphere on the particle just after the release? (b) Find the distance travelled by the particle before it loses contact with the sphere. 


The work done by an applied variable force, F = x + x3 from x = 0 m to x = 2m, where x is displacement, is:


A graph of potential energy V(x) verses x is shown in figure. A particle of energy E0 is executing motion in it. Draw graph of velocity and kinetic energy versus x for one complete cycle AFA.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×