English

A random variable X has the following probability distribution : X 0 1 2 3 4 5 6 7 P(X) 0 k 2k 2k 3k k2 2k2 7k2 + k Determine: k P(X < 3) P( X > 4) - Mathematics and Statistics

Advertisements
Advertisements

Question

A random variable X has the following probability distribution:

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine:

  1. k
  2. P(X < 3)
  3. P( X > 4)
Sum

Solution

i. The table gives a probability distribution and therefore `sum_(i = 1)^8 P_i` = 1

∴ 0 + k + 2k + 2k + 3k + k2 + 2k2 + 7k2 + k = 1

∴ 10k2 + 9k – 1 = 0

∴ 10k2 + 10k – k – 1 = 0

∴ 10k(k + 1) – 1(k + 1) = 0

∴ (10k – 1)(k + 1) = 0

∴ k = `1/10` or k = –1

But k cannot be negative

∴ k = `1/10`

ii. P(X < 3)

= P(X = 0 or X = 1 or X = 2)

= P(X = 0) + P(X = 1) + P(X = 2)

= 0 + k + 2k

= 3k

= `3/10` 

iii. P(X > 4)

= P(X = 5 or X = 6 or X = 7)

= P(X = 5) + P(X = 6) + P(X = 7)

= k2 + 2k2 + 7k2 + k

= 10k2 + k

= `10(1/10)^2 + 1/10`

= `1/10 + 1/10`

= `1/5`

shaalaa.com
Probability Distribution of Discrete Random Variables
  Is there an error in this question or solution?
Chapter 7: Probability Distributions - Exercise 7.1 [Page 232]

RELATED QUESTIONS

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 − 0.1 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.1 0.6 0.3

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

Y −1 0 1
P(Y) 0.6 0.1 0.2

Find expected value and variance of X for the following p.m.f.

x -2 -1 0 1 2
P(X) 0.2 0.3 0.1 0.15 0.25

Find the mean number of heads in three tosses of a fair coin.


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

 Verify whether f (x) is p.d.f. of r.v. X.


Find k if the following function represent p.d.f. of r.v. X

f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that waiting time is between 1 and 3.


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that the waiting time is more than 4 minutes.


If a r.v. X has p.d.f., 

f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).


If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______. 


Choose the correct option from the given alternative:

If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =


Choose the correct option from the given alternative :

If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

Amount of syrup prescribed by physician.


Solve the following problem :

A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

1

P (X ≤ 3/ X > 0)


The probability distribution of discrete r.v. X is as follows :

x = x 1 2 3 4 5 6
P[x=x] k 2k 3k 4k 5k 6k

(i) Determine the value of k.

(ii) Find P(X≤4), P(2<X< 4), P(X≥3).


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(x≤1)


Find the probability distribution of number of number of tails in three tosses of a coin


Find the probability distribution of number of heads in four tosses of a coin


Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)


F(x) is c.d.f. of discrete r.v. X whose distribution is

Xi – 2 – 1 0 1 2
Pi 0.2 0.3 0.15 0.25 0.1

Then F(–  3) = _______ .


Choose the correct alternative :

X: is number obtained on upper most face when a fair die….thrown then E(X) = _______.


Choose the correct alternative :

If X ∼ B`(20, 1/10)` then E(X) = _______


Fill in the blank :

If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______


If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).


Solve the following problem :

The following is the c.d.f of a r.v.X.

x – 3 – 2 – 1 0 1 2 3 4
F (x) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find the probability distribution of X and P(–1 ≤ X ≤ 2).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x – 1 0 1
P(X = x) `(1)/(5)` `(2)/(5)` `(2)/(5)`

If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for"  x = 1","  2","  3","  .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______


If a d.r.v. X has the following probability distribution:

X –2 –1 0 1 2 3
P(X = x) 0.1 k 0.2 2k 0.3 k

then P(X = –1) is ______


The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.


If X is discrete random variable takes the values x1, x2, x3, … xn, then `sum_("i" = 1)^"n" "P"(x_"i")` = ______


E(x) is considered to be ______ of the probability distribution of x.


Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.

x 1 2 3
P(X = x) `1/5` `2/5` `2/5`

Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`

E(X) = `square + square + square = square`

Var(X) = `"E"("X"^2) - {"E"("X")}^2`

= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`

= `square - square`

= `square`


If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


The p.m.f. of a random variable X is as follows:

P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×