Advertisements
Advertisements
Question
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.
Solution 1
When a die is tossed twice, the sample space S has 6 × 6 = 36 sample points.
∴ n(S) = 36
Trial will be a success if the number on at least one die is 5 or 6.
Let X denote the number of dice on which 5 or 6 appears.
Then X can take values 0, 1, 2
When X = 0 i.e., 5 or 6 do not appear on any of the dice, then
X = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}.
∴ n(X) = 16
∴ P(X = 0) =
When X = 1, i.e. 5 or 6 appear on exactly one of the dice, then
X = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (6, 1), (6, 2), (6, 3), (6, 4)}
∴ n(X) = 16
∴ P(X = 1) =
When X = 2, i.e. 5 or 6 appear on both of the dice, then
X = {(5, 5), (5, 6), (6, 5), (6, 6)}
∴ n(X) = 4
∴ P(X = 2) =
∴ The required probability distribution is
X | 0 | 1 | 2 |
P(X = x) |
Solution 2
Success is defined as a number greater than 4 appears on at least one die
Let X denote the number of successes.
∴ Possible values of X and 0, 1, 2.
Let P(getting a number greater than 4) = p
=
=
∴ q = 1 – p
=
=
∴ P(X = 0) = P(no success)
= q2
=
P(X = 1) = P(one success)
= qp + pq = 2pq
=
=
P(X = 2) = P(two successes)
= pp
= p2
=
∴ Probability distribution of X is as follows:
X | 0 | 1 | 2 |
P(X = x) |
APPEARS IN
RELATED QUESTIONS
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
Y | −1 | 0 | 1 |
P(Y) | 0.6 | 0.1 | 0.2 |
A random variable X has the following probability distribution:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine:
- k
- P(X < 3)
- P( X > 4)
Find expected value and variance of X for the following p.m.f.
x | -2 | -1 | 0 | 1 | 2 |
P(X) | 0.2 | 0.3 | 0.1 | 0.15 | 0.25 |
Find the mean number of heads in three tosses of a fair coin.
The following is the p.d.f. of r.v. X :
f(x) =
P ( 1 < x < 2 )
The following is the p.d.f. of r.v. X:
f(x) =
P(x > 2)
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) =
Verify whether f (x) is p.d.f. of r.v. X.
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) =
Find probability that X is negative
Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) =
Find the probability that waiting time is between 1 and 3.
Choose the correct option from the given alternative :
P.d.f. of a.c.r.v X is f (x) = 6x (1 − x), for 0 ≤ x ≤ 1 and = 0, otherwise (elsewhere)
If P (X < a) = P (X > a), then a =
If the p.d.f. of c.r.v. X is f(x) =
Choose the correct option from the given alternative:
If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =
Choose the correct option from the given alternative:
If p.m.f. of a d.r.v. X is P (X = x) =
Choose the correct option from the given alternative :
If p.m.f. of a d.r.v. X is P (x) =
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
The person on the high protein diet is interested gain of weight in a week.
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is positive
Solve the following problem :
A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.
The probability distribution of discrete r.v. X is as follows :
x = x | 1 | 2 | 3 | 4 | 5 | 6 |
P[x=x] | k | 2k | 3k | 4k | 5k | 6k |
(i) Determine the value of k.
(ii) Find P(X≤4), P(2<X< 4), P(X≥3).
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(x≤1)
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(0.5 ≤ x ≤ 1.5)
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)
Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)
Given that X ~ B(n,p), if n = 25, E(X) = 10, find p and Var (X).
Given that X ~ B(n,p), if n = 10, E(X) = 8, find Var(X).
F(x) is c.d.f. of discrete r.v. X whose distribution is
Xi | – 2 | – 1 | 0 | 1 | 2 |
Pi | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
Then F(– 3) = _______ .
The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.
Choose the correct alternative :
If X ∼ B
Fill in the blank :
If X is discrete random variable takes the value x1, x2, x3,…, xn then
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) =
State whether the following is True or False :
If p.m.f. of discrete r.v. X is
x | 0 | 1 | 2 |
P(X = x) | q2 | 2pq | p2 |
then E(x) = 2p.
If r.v. X assumes values 1, 2, 3, ……. n with equal probabilities then E(X) =
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Determine the value of k.
Solve the following problem :
The following is the c.d.f of a r.v.X.
x | – 3 | – 2 | – 1 | 0 | 1 | 2 | 3 | 4 |
F (x) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 | 1 |
Find the probability distribution of X and P(–1 ≤ X ≤ 2).
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
X | 0 | 1 | 2 | 3 | 4 | 5 |
P(X = x) |
The probability distribution of X is as follows:
X | 0 | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | k | 2k | 2k | k |
Find k and P[X < 2]
If X is discrete random variable takes the values x1, x2, x3, … xn, then
E(x) is considered to be ______ of the probability distribution of x.
The p.m.f. of a random variable X is as follows:
P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.