English

Find expected value and variance of X for the following p.m.f. x -2 -1 0 1 2 P(X) 0.2 0.3 0.1 0.15 0.25 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find expected value and variance of X for the following p.m.f.

x -2 -1 0 1 2
P(X) 0.2 0.3 0.1 0.15 0.25
Sum

Solution 1

We construct the following table to calculate E (X) and V (X) :

X = xi pi =P [X = xi] xi · pi xi 2·pi = xi × xi·pi
-2 0.2 -0.4 0.8
-1 0.3 -0.3 0.3
0 0.1 0 0
1 0.15 0.15 0.15
2 0.25 0.5 1
Total 1 -0.05 2.25

From the table, Σxi · pi = -0.05 and Σxi2 · pi = 2.25

∴E (X) = Σxi · pi= -0.05

and V (X) = Σxi 2 ·pi - ( Σxi · pi)2

= 2.25 - (-0.05)2

= 2.25 - 0.0025 = 2.2475

Hence, E (X)= -0.05 and V (X) = 2.2475.

shaalaa.com

Solution 2

Expected value of X 5
= E(X) = i=15xi.Pi(xi)

= (–2) x (0.2) + (–1) x (0.3) + 0 x (0.1) + 1 x (0.15) + 2 x (0.25)
= – 0.4 – 0.3 + 0 + 0.15 + 0.5
= – 0.05

E(X2) = i=15xi.Pi(xi)

= (–2)2 x (0.2) + (–1)2 x (0.3) + 02 x (0.1) + 12 x (0.15) + 22 x (0.25)
= 0.8 + 0.3 + 0 + 0.15 + 1
= 2.25
∴ Variance of X
= Var(X)
= E(X2) – [E(X)]2
= 2.25 – (– 0.05)2
= 2.2475.

shaalaa.com
Probability Distribution of Discrete Random Variables
  Is there an error in this question or solution?
Chapter 7: Probability Distributions - Exercise 7.1 [Page 232]

RELATED QUESTIONS

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.4 0.4 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

0 -1 -2
P(X) 0.3 0.4 0.3

Find the mean number of heads in three tosses of a fair coin.


The following is the p.d.f. of r.v. X:

f(x) = x8, for 0 < x < 4 and = 0 otherwise.

Find P (x < 1·5)


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = x23 , for –1 < x < 2 and = 0 otherwise

 Verify whether f (x) is p.d.f. of r.v. X.


Find k if the following function represent p.d.f. of r.v. X

f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P (14<x<32).


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = 15, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that waiting time is between 1 and 3.


If a r.v. X has p.d.f., 

f (x) = cx , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).


Choose the correct option from the given alternative:

If the p.d.f of a.c.r.v. X is f (x) = 3 (1 − 2x2 ), for 0 < x < 1 and = 0, otherwise (elsewhere) then the c.d.f of X is F(x) =


If the p.d.f. of c.r.v. X is f(x) = x218, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______. 


Choose the correct option from the given alternative:

If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = x2n(n+1), for x = 1, 2, 3, . . ., n and = 0, otherwise then E (X ) =


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution :

x -2 -1 0 1 2 3
p(X=x) 0.1 k 0.2 2k 0.3 k

then P (X = −1) =


Choose the correct option from the given alternative:

Find expected value of and variance of X for the following p.m.f.

X -2 -1 0 1 2
P(x) 0.3 0.3 0.1 0.05 0.25

Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

Amount of syrup prescribed by physician.


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is positive


Solve the following problem :

A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

*1

P (–1 ≤ X ≤ 2)


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

1

P (X ≤ 3/ X > 0)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(0.5 ≤ x ≤ 1.5)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)


Find expected value and variance of X, the number on the uppermost face of a fair die.


Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)


Given that X ~ B(n,p), if n = 25, E(X) = 10, find p and Var (X).


The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.


Choose the correct alternative :

If X ∼ B(20,110) then E(X) = _______


State whether the following is True or False :

If p.m.f. of discrete r.v. X is

x 0 1 2
P(X = x) q2 2pq p2 

then E(x) = 2p.


If r.v. X assumes values 1, 2, 3, ……. n with equal probabilities then E(X) = n+12


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Determine the value of k.


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).


Solve the following problem :

Let the p. m. f. of the r. v. X be

P(x)={3-x10, for x=-1, 0, 1, 2.0otherwise.
Calculate E(X) and Var(X).


If X denotes the number on the uppermost face of cubic die when it is tossed, then E(X) is ______


If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______


If the p.m.f. of a d.r.v. X is P(X = x) = {xn(n+1),for x=1, 2, 3, ....,n0,otherwise, then E(X) = ______


If the p.m.f. of a d.r.v. X is P(X = x) = {cx3,for x=1, 2, 3,0,otherwise then E(X) = ______


If a d.r.v. X has the following probability distribution:

X –2 –1 0 1 2 3
P(X = x) 0.1 k 0.2 2k 0.3 k

then P(X = –1) is ______


Find mean for the following probability distribution.

X 0 1 2 3
P(X = x) 16 13 13 16

Find the expected value and variance of r.v. X whose p.m.f. is given below.

X 1 2 3
P(X = x) 15 25 25

The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


The values of discrete r.v. are generally obtained by ______


If X is discrete random variable takes the values x1, x2, x3, … xn, then i=1nP(xi) = ______


The following function represents the p.d.f of a.r.v. X

f(x) = {kx;for 0<x<2then the value of K is 0; otherwise ______ 


The probability distribution of a discrete r.v. X is as follows:

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k
  1. Determine the value of k.
  2. Find P(X ≤ 4)
  3. P(2 < X < 4)
  4. P(X ≥ 3)

The probability distribution of X is as follows:

x 0 1 2 3 4
P[X = x] 0.1 k 2k 2k k

Find

  1. k
  2. P[X < 2]
  3. P[X ≥ 3]
  4. P[1 ≤ X < 4]
  5. P(2)

Given below is the probability distribution of a discrete random variable x.

X 1 2 3 4 5 6
P(X = x) K 0 2K 5K K 3K

Find K and hence find P(2 ≤ x ≤ 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.