English

Find the expected value and variance of r.v. X whose p.m.f. is given below. X 1 2 3 P(X = x) 15 25 25 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the expected value and variance of r.v. X whose p.m.f. is given below.

X 1 2 3
P(X = x) `1/5` `2/5` `2/5`
Sum

Solution

E(X) = `sum_("i" = 1)^3 x_"i"* "P"(x_"i")`

= `1(1/5) + 2(2/5) + 3(2/5)`

= `(1 + 4 + 6)/5`

= `11/5`

E(x2) = `sum_("i" = 1)^3 x_"i"^2* "P"(x_"i")`

= `1^2 (1/5) + 2^2(2/5) + 3^2(2/5)`

= `(1 + 8 + 18)/5`

= `27/5`

∴ Var(X) = E(X2) − [E(X)]2

= `27/5 - (11/5)^2` 

= `14/25`

shaalaa.com
Probability Distribution of Discrete Random Variables
  Is there an error in this question or solution?
Chapter 2.7: Probability Distributions - Short Answers I

APPEARS IN

RELATED QUESTIONS

State if the following is not the probability mass function of a random variable. Give reasons for your answer

Z 3 2 1 0 −1
P(Z) 0.3 0.2 0.4 0 0.05

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

Y −1 0 1
P(Y) 0.6 0.1 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

0 -1 -2
P(X) 0.3 0.4 0.3

It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


Find k, if the following function represents p.d.f. of r.v. X.

f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.

Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.


Choose the correct option from the given alternative :

P.d.f. of a.c.r.v X is f (x) = 6x (1 − x), for 0 ≤ x ≤ 1 and = 0, otherwise (elsewhere)

If P (X < a) = P (X > a), then a =


Choose the correct option from the given alternative:

If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =


Choose the correct option from the given alternative :

If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

Amount of syrup prescribed by physician.


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

The person on the high protein diet is interested gain of weight in a week.


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(x≤1)


Find the probability distribution of number of number of tails in three tosses of a coin


Find expected value and variance of X, the number on the uppermost face of a fair die.


Find k if the following function represents the p. d. f. of a r. v. X.

f(x) = `{(kx,  "for"  0 < x < 2),(0,  "otherwise."):}`

Also find `"P"[1/4 < "X" < 1/2]`


F(x) is c.d.f. of discrete r.v. X whose distribution is

Xi – 2 – 1 0 1 2
Pi 0.2 0.3 0.15 0.25 0.1

Then F(–  3) = _______ .


Choose the correct alternative :

If X ∼ B`(20, 1/10)` then E(X) = _______


Fill in the blank :

If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______


If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


State whether the following is True or False :

If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.


Solve the following problem :

The p.m.f. of a r.v.X is given by

`P(X = x) = {(((5),(x)) 1/2^5", ", x = 0", "1", "2", "3", "4", "5.),(0,"otherwise"):}`

Show that P(X ≤ 2) = P(X ≤ 3).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

X 0 1 2 3 4 5
P(X = x) `(1)/(32)` `(5)/(32)` `(10)/(32)` `(10)/(32)` `(5)/(32)` `(1)/(32)`

Solve the following problem :

Let X∼B(n,p) If n = 10 and E(X)= 5, find p and Var(X).


Solve the following problem :

Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.


If X denotes the number on the uppermost face of cubic die when it is tossed, then E(X) is ______


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(("c")/x^3",", "for"  x = 1","  2","  3","),(0",", "otherwise"):}` then E(X) = ______


The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.


Choose the correct alternative:

f(x) is c.d.f. of discete r.v. X whose distribution is

xi – 2 – 1 0 1 2
pi 0.2 0.3 0.15 0.25 0.1

then F(– 3) = ______


E(x) is considered to be ______ of the probability distribution of x.


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

P(X ≤ 4) = `square + square + square + square = square`


The following function represents the p.d.f of a.r.v. X

f(x) = `{{:((kx;, "for"  0 < x < 2, "then the value of K is ")),((0;,  "otherwise")):}` ______ 


The value of discrete r.v. is generally obtained by counting.


The p.m.f. of a random variable X is as follows:

P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×