Advertisements
Advertisements
प्रश्न
Find the expected value and variance of r.v. X whose p.m.f. is given below.
X | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
उत्तर
E(X) = `sum_("i" = 1)^3 x_"i"* "P"(x_"i")`
= `1(1/5) + 2(2/5) + 3(2/5)`
= `(1 + 4 + 6)/5`
= `11/5`
E(x2) = `sum_("i" = 1)^3 x_"i"^2* "P"(x_"i")`
= `1^2 (1/5) + 2^2(2/5) + 3^2(2/5)`
= `(1 + 8 + 18)/5`
= `27/5`
∴ Var(X) = E(X2) − [E(X)]2
= `27/5 - (11/5)^2`
= `14/25`
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.4 | 0.4 | 0.2 |
Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard deviation of X.
The following is the p.d.f. of r.v. X:
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
Find P (x < 1·5)
The following is the p.d.f. of r.v. X :
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise
P ( 1 < x < 2 )
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Find probability that X is negative
Find k if the following function represent p.d.f. of r.v. X
f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.
Find k, if the following function represents p.d.f. of r.v. X.
f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.
Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.
Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.
Find the probability that waiting time is between 1 and 3.
If a r.v. X has p.d.f.,
f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).
Choose the correct option from the given alternative:
If the p.d.f of a.c.r.v. X is f (x) = 3 (1 − 2x2 ), for 0 < x < 1 and = 0, otherwise (elsewhere) then the c.d.f of X is F(x) =
Choose the correct option from the given alternative :
If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =
Choose the correct option from the given alternative:
Find expected value of and variance of X for the following p.m.f.
X | -2 | -1 | 0 | 1 | 2 |
P(x) | 0.3 | 0.3 | 0.1 | 0.05 | 0.25 |
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is positive
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(x≤1)
Find the probability distribution of number of number of tails in three tosses of a coin
Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)
Choose the correct alternative :
If X ∼ B`(20, 1/10)` then E(X) = _______
Fill in the blank :
If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______
State whether the following is True or False :
x | – 2 | – 1 | 0 | 1 | 2 |
P(X = x) | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0
State whether the following is True or False :
If p.m.f. of discrete r.v. X is
x | 0 | 1 | 2 |
P(X = x) | q2 | 2pq | p2 |
then E(x) = 2p.
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Determine the value of k.
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | – 1 | 0 | 1 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | 1 | 2 | 3 | ... | n |
P(X = x) | `(1)/"n"` | `(1)/"n"` | `(1)/"n"` | ... | `(1)/"n"` |
Solve the following problem :
Let X∼B(n,p) If n = 10 and E(X)= 5, find p and Var(X).
Solve the following problem :
Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.
If X denotes the number on the uppermost face of cubic die when it is tossed, then E(X) is ______
If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for" x = 1"," 2"," 3"," .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______
If a d.r.v. X has the following probability distribution:
X | –2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P(X = –1) is ______
Choose the correct alternative:
f(x) is c.d.f. of discete r.v. X whose distribution is
xi | – 2 | – 1 | 0 | 1 | 2 |
pi | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
then F(– 3) = ______
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
P(X ≥ 3) = `square - square - square = square`
Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.
x | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`
E(X) = `square + square + square = square`
Var(X) = `"E"("X"^2) - {"E"("X")}^2`
= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`
= `square - square`
= `square`