मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the expected value and variance of r.v. X whose p.m.f. is given below. X 1 2 3 P(X = x) 15 25 25 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the expected value and variance of r.v. X whose p.m.f. is given below.

X 1 2 3
P(X = x) `1/5` `2/5` `2/5`
बेरीज

उत्तर

E(X) = `sum_("i" = 1)^3 x_"i"* "P"(x_"i")`

= `1(1/5) + 2(2/5) + 3(2/5)`

= `(1 + 4 + 6)/5`

= `11/5`

E(x2) = `sum_("i" = 1)^3 x_"i"^2* "P"(x_"i")`

= `1^2 (1/5) + 2^2(2/5) + 3^2(2/5)`

= `(1 + 8 + 18)/5`

= `27/5`

∴ Var(X) = E(X2) − [E(X)]2

= `27/5 - (11/5)^2` 

= `14/25`

shaalaa.com
Probability Distribution of Discrete Random Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.7: Probability Distributions - Short Answers I

संबंधित प्रश्‍न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.4 0.4 0.2

Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard deviation of X.


The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find P (x < 1·5)


The following is the p.d.f. of r.v. X :

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise

P ( 1 < x < 2 )


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


Find k if the following function represent p.d.f. of r.v. X

f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.


Find k, if the following function represents p.d.f. of r.v. X.

f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.

Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that waiting time is between 1 and 3.


If a r.v. X has p.d.f., 

f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).


Choose the correct option from the given alternative:

If the p.d.f of a.c.r.v. X is f (x) = 3 (1 − 2x2 ), for 0 < x < 1 and = 0, otherwise (elsewhere) then the c.d.f of X is F(x) =


Choose the correct option from the given alternative :

If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =


Choose the correct option from the given alternative:

Find expected value of and variance of X for the following p.m.f.

X -2 -1 0 1 2
P(x) 0.3 0.3 0.1 0.05 0.25

Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is positive


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(x≤1)


Find the probability distribution of number of number of tails in three tosses of a coin


Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)


Choose the correct alternative :

If X ∼ B`(20, 1/10)` then E(X) = _______


Fill in the blank :

If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______


State whether the following is True or False :

x – 2 – 1 1 2
P(X = x) 0.2 0.3 0.15 0.25 0.1

If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0


State whether the following is True or False :

If p.m.f. of discrete r.v. X is

x 0 1 2
P(X = x) q2 2pq p2 

then E(x) = 2p.


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Determine the value of k.


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x – 1 0 1
P(X = x) `(1)/(5)` `(2)/(5)` `(2)/(5)`

Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x 1 2 3 ... n
P(X = x) `(1)/"n"` `(1)/"n"` `(1)/"n"` ... `(1)/"n"`

Solve the following problem :

Let X∼B(n,p) If n = 10 and E(X)= 5, find p and Var(X).


Solve the following problem :

Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.


If X denotes the number on the uppermost face of cubic die when it is tossed, then E(X) is ______


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for"  x = 1","  2","  3","  .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______


If a d.r.v. X has the following probability distribution:

X –2 –1 0 1 2 3
P(X = x) 0.1 k 0.2 2k 0.3 k

then P(X = –1) is ______


Choose the correct alternative:

f(x) is c.d.f. of discete r.v. X whose distribution is

xi – 2 – 1 0 1 2
pi 0.2 0.3 0.15 0.25 0.1

then F(– 3) = ______


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

P(X ≥ 3) = `square - square - square  = square`


Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.

x 1 2 3
P(X = x) `1/5` `2/5` `2/5`

Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`

E(X) = `square + square + square = square`

Var(X) = `"E"("X"^2) - {"E"("X")}^2`

= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`

= `square - square`

= `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×