Advertisements
Advertisements
प्रश्न
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).
उत्तर
a. P(X ≤ 4) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)
= k + 2k + 3k + 4k
= 10k
= `(10)/(21)`
b. P(2 < X < 4) = P(X = 3) = 3k = `(3)/(21) = (1)/(7)`
c. P(X ≥ 3) = 1 – P(X < 3)
= 1 – [P(X = 1) + P(X = 2)]
= 1 – (k + 2k) = 1 – 3k
= `1 - (3)/(21)`
= `1 - (1)/(7)`
=`(6)/(7)`.
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
Y | −1 | 0 | 1 |
P(Y) | 0.6 | 0.1 | 0.2 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | -1 | -2 |
P(X) | 0.3 | 0.4 | 0.3 |
Find the mean number of heads in three tosses of a fair coin.
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Find probability that X is negative
Choose the correct option from the given alternative:
If p.m.f. of a d.r.v. X is P (X = x) = `x^2 /(n (n + 1))`, for x = 1, 2, 3, . . ., n and = 0, otherwise then E (X ) =
Choose the correct option from the given alternative:
Find expected value of and variance of X for the following p.m.f.
X | -2 | -1 | 0 | 1 | 2 |
P(x) | 0.3 | 0.3 | 0.1 | 0.05 | 0.25 |
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
Amount of syrup prescribed by physician.
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
The person on the high protein diet is interested gain of weight in a week.
The following is the c.d.f. of r.v. X:
X | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 | 1 |
Find p.m.f. of X.
i. P(–1 ≤ X ≤ 2)
ii. P(X ≤ 3 / X > 0).
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
*1 |
P (–1 ≤ X ≤ 2)
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
1 |
P (X ≤ 3/ X > 0)
The probability distribution of discrete r.v. X is as follows :
x = x | 1 | 2 | 3 | 4 | 5 | 6 |
P[x=x] | k | 2k | 3k | 4k | 5k | 6k |
(i) Determine the value of k.
(ii) Find P(X≤4), P(2<X< 4), P(X≥3).
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)
Find the probability distribution of number of heads in four tosses of a coin
F(x) is c.d.f. of discrete r.v. X whose distribution is
Xi | – 2 | – 1 | 0 | 1 | 2 |
Pi | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
Then F(– 3) = _______ .
If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(("c")/x^3",", "for" x = 1"," 2"," 3","),(0",", "otherwise"):}` then E(X) = ______
Find mean for the following probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | `1/6` | `1/3` | `1/3` | `1/6` |
Choose the correct alternative:
f(x) is c.d.f. of discete r.v. X whose distribution is
xi | – 2 | – 1 | 0 | 1 | 2 |
pi | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
then F(– 3) = ______
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
P(X ≤ 4) = `square + square + square + square = square`
The following function represents the p.d.f of a.r.v. X
f(x) = `{{:((kx;, "for" 0 < x < 2, "then the value of K is ")),((0;, "otherwise")):}` ______