Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternative:
Find expected value of and variance of X for the following p.m.f.
X | -2 | -1 | 0 | 1 | 2 |
P(x) | 0.3 | 0.3 | 0.1 | 0.05 | 0.25 |
पर्याय
0·85
– 0·35
0·15
– 0·15
उत्तर
Explanation:
E(x) = ∑xipi
E(x) = (-2)(0.3) + (-1)(0.3) + (0)(0.1) + (1)(0.05) + (2)(0.25)
= -0.6 - 0.3 + 0 + 0.05 + 0.5
= -0.35
APPEARS IN
संबंधित प्रश्न
A random variable X has the following probability distribution:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine:
- k
- P(X < 3)
- P( X > 4)
Find the mean number of heads in three tosses of a fair coin.
Find k if the following function represent p.d.f. of r.v. X
f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.
Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.
Find the probability that waiting time is between 1 and 3.
Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.
Find the probability that the waiting time is more than 4 minutes.
Choose the correct option from the given alternative:
If the p.d.f of a.c.r.v. X is f (x) = 3 (1 − 2x2 ), for 0 < x < 1 and = 0, otherwise (elsewhere) then the c.d.f of X is F(x) =
If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______.
Choose the correct option from the given alternative:
If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =
Choose the correct option from the given alternative:
If p.m.f. of a d.r.v. X is P (X = x) = `x^2 /(n (n + 1))`, for x = 1, 2, 3, . . ., n and = 0, otherwise then E (X ) =
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
Solve the following problem :
A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(0.5 ≤ x ≤ 1.5)
Find the probability distribution of number of heads in four tosses of a coin
Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)
Given that X ~ B(n,p), if n = 10, E(X) = 8, find Var(X).
Choose the correct alternative :
X: is number obtained on upper most face when a fair die….thrown then E(X) = _______.
The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.
X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
State whether the following is True or False :
If p.m.f. of discrete r.v. X is
x | 0 | 1 | 2 |
P(X = x) | q2 | 2pq | p2 |
then E(x) = 2p.
If r.v. X assumes values 1, 2, 3, ……. n with equal probabilities then E(X) = `("n" + 1)/(2)`
Solve the following problem :
The p.m.f. of a r.v.X is given by
`P(X = x) = {(((5),(x)) 1/2^5", ", x = 0", "1", "2", "3", "4", "5.),(0,"otherwise"):}`
Show that P(X ≤ 2) = P(X ≤ 3).
Solve the following problem :
The following is the c.d.f of a r.v.X.
x | – 3 | – 2 | – 1 | 0 | 1 | 2 | 3 | 4 |
F (x) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 | 1 |
Find the probability distribution of X and P(–1 ≤ X ≤ 2).
Solve the following problem :
Let the p. m. f. of the r. v. X be
`"P"(x) = {((3 - x)/(10)", ","for" x = -1", "0", "1", "2.),(0,"otherwise".):}`
Calculate E(X) and Var(X).
If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______
If a d.r.v. X has the following probability distribution:
X | –2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P(X = –1) is ______
Find the expected value and variance of r.v. X whose p.m.f. is given below.
X | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
The values of discrete r.v. are generally obtained by ______
E(x) is considered to be ______ of the probability distribution of x.
The following function represents the p.d.f of a.r.v. X
f(x) = `{{:((kx;, "for" 0 < x < 2, "then the value of K is ")),((0;, "otherwise")):}` ______
The probability distribution of a discrete r.v. X is as follows:
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
- Determine the value of k.
- Find P(X ≤ 4)
- P(2 < X < 4)
- P(X ≥ 3)
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
The probability distribution of X is as follows:
x | 0 | 1 | 2 | 3 | 4 |
P[X = x] | 0.1 | k | 2k | 2k | k |
Find
- k
- P[X < 2]
- P[X ≥ 3]
- P[1 ≤ X < 4]
- P(2)
The p.m.f. of a random variable X is as follows:
P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.