मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : The following is the c.d.f of a r.v.X. x – 3 – 2 – 1 0 1 2 3 4 F (x) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1 Find the probability distribution of X and P(–1 ≤ X ≤ 2). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

The following is the c.d.f of a r.v.X.

x – 3 – 2 – 1 0 1 2 3 4
F (x) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find the probability distribution of X and P(–1 ≤ X ≤ 2).

बेरीज

उत्तर

P(X = –3) = F(–3) = 0.1
P(X = –2) = F(–2) – F(–3) = 0.3 – 0.1 = 0.2
P(X = –1) = F(–1) – F(–2) = 0.5 – 0.3 = 0.2
P(X = 0) = F(0) – F(–1) = 0.65 – 0.5 = 0.15
P(X = 1) = F(1) – F(0) = 0.75 – 0.65 = 0.1
P(X = 2) = F(2) – F(1) = 0.85 – 0.75 = 0.1
P(X = 3) = F(3) – F(2) = 0.9 – 0.85 = 0.05
P(X = 4) = F(4) – F(3) = 1 – 0.9 = 0.1
∴ The probability distribution of X is as follows:

X = x – 3 – 2 – 1 0 1 2 3 4
P(X = x) 0.1 0.2 0.2 0.15 0.1 0.1 0.05 0.1

P(–1 ≤ X ≤ 2)
= P(X = –1 or X = 0 or X = 1 or X = 2)
= P(X = –1) + P(X = 0) + P(X = 1) + P(X = 2)
= 0.2 + 0.15 + 0.1 + 0.1
= 0.55

shaalaa.com
Probability Distribution of Discrete Random Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Part I [पृष्ठ १५५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Probability Distributions
Part I | Q 1.09 | पृष्ठ १५५

संबंधित प्रश्‍न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.4 0.4 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

Y −1 0 1
P(Y) 0.6 0.1 0.2

Find the mean number of heads in three tosses of a fair coin.


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =


Solve the following problem :

A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.


The following is the c.d.f. of r.v. X:

X −3 −2 −1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find p.m.f. of X.
i. P(–1 ≤ X ≤ 2)
ii. P(X ≤ 3 / X > 0).


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

*1

P (–1 ≤ X ≤ 2)


The probability distribution of discrete r.v. X is as follows :

x = x 1 2 3 4 5 6
P[x=x] k 2k 3k 4k 5k 6k

(i) Determine the value of k.

(ii) Find P(X≤4), P(2<X< 4), P(X≥3).


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(x≤1)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)


If F(x) is distribution function of discrete r.v.X with p.m.f. P(x) = `k^4C_x` for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(–1) = _______


Fill in the blank :

E(x) is considered to be _______ of the probability distribution of x.


State whether the following is True or False :

x – 2 – 1 1 2
P(X = x) 0.2 0.3 0.15 0.25 0.1

If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x – 1 0 1
P(X = x) `(1)/(5)` `(2)/(5)` `(2)/(5)`

If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for"  x = 1","  2","  3","  .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______


Find the expected value and variance of r.v. X whose p.m.f. is given below.

X 1 2 3
P(X = x) `1/5` `2/5` `2/5`

The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


If p.m.f. of r.v. X is given below.

x 0 1 2
P(x) q2 2pq p2

then Var(x) = ______


The probability distribution of a discrete r.v. X is as follows:

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k
  1. Determine the value of k.
  2. Find P(X ≤ 4)
  3. P(2 < X < 4)
  4. P(X ≥ 3)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×