Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
पर्याय
`1/10`
`2/10`
`3/10`
`4/10`
उत्तर
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) = `1/10`
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer
Z | 3 | 2 | 1 | 0 | −1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0 | 0.05 |
Find the mean number of heads in three tosses of a fair coin.
Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard deviation of X.
The following is the p.d.f. of r.v. X:
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
Find P (x < 1·5)
Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.
Find the probability that waiting time is between 1 and 3.
If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______.
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is positive
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
*1 |
P (–1 ≤ X ≤ 2)
The probability distribution of discrete r.v. X is as follows :
x = x | 1 | 2 | 3 | 4 | 5 | 6 |
P[x=x] | k | 2k | 3k | 4k | 5k | 6k |
(i) Determine the value of k.
(ii) Find P(X≤4), P(2<X< 4), P(X≥3).
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(x≤1)
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(0.5 ≤ x ≤ 1.5)
Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)
F(x) is c.d.f. of discrete r.v. X whose distribution is
Xi | – 2 | – 1 | 0 | 1 | 2 |
Pi | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
Then F(– 3) = _______ .
Fill in the blank :
E(x) is considered to be _______ of the probability distribution of x.
State whether the following is True or False :
If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.
State whether the following is True or False :
x | – 2 | – 1 | 0 | 1 | 2 |
P(X = x) | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0
State whether the following is True or False :
If p.m.f. of discrete r.v. X is
x | 0 | 1 | 2 |
P(X = x) | q2 | 2pq | p2 |
then E(x) = 2p.
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).
Solve the following problem :
The following is the c.d.f of a r.v.X.
x | – 3 | – 2 | – 1 | 0 | 1 | 2 | 3 | 4 |
F (x) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 | 1 |
Find the probability distribution of X and P(–1 ≤ X ≤ 2).
Solve the following problem :
Let X∼B(n,p) If n = 10 and E(X)= 5, find p and Var(X).
If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______
Find mean for the following probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | `1/6` | `1/3` | `1/3` | `1/6` |
Find the expected value and variance of r.v. X whose p.m.f. is given below.
X | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
Choose the correct alternative:
f(x) is c.d.f. of discete r.v. X whose distribution is
xi | – 2 | – 1 | 0 | 1 | 2 |
pi | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
then F(– 3) = ______
The values of discrete r.v. are generally obtained by ______
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
k = `square`
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
The probability distribution of X is as follows:
x | 0 | 1 | 2 | 3 | 4 |
P[X = x] | 0.1 | k | 2k | 2k | k |
Find
- k
- P[X < 2]
- P[X ≥ 3]
- P[1 ≤ X < 4]
- P(2)
The value of discrete r.v. is generally obtained by counting.
Given below is the probability distribution of a discrete random variable x.
X | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | K | 0 | 2K | 5K | K | 3K |
Find K and hence find P(2 ≤ x ≤ 3)