Advertisements
Advertisements
प्रश्न
If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______.
पर्याय
`1/27`
`1/28`
`1/29`
`1/26`
उत्तर
If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0. otherwise, then P(|X| < 1) = `bbunderline(1/27)`.
Explanation:
To solve this problem, we need to calculate P(|X| < 1) for the given probability density function (p.d.f.):
f(x) = `x^2/18, -3<x<3`
First, let's find the probability P(|X| < 1). This is the probability that the random variable X lies between -1 and 1, i.e.,
P(|X| < 1) = `int_-1^1 f(x) dx`
Substituting the given p.d.f. f(x) = `x^2/18,` the integral becomes:
P(|X| < 1) = `int_-1^1 x^2/18 dx`
We can now compute this integral.
The value of P(|X| < 1) is `1/27`.
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.4 | 0.4 | 0.2 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer
Z | 3 | 2 | 1 | 0 | −1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0 | 0.05 |
Find expected value and variance of X for the following p.m.f.
x | -2 | -1 | 0 | 1 | 2 |
P(X) | 0.2 | 0.3 | 0.1 | 0.15 | 0.25 |
The following is the p.d.f. of r.v. X:
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
P(x > 2)
Choose the correct option from the given alternative:
If the p.d.f of a.c.r.v. X is f (x) = 3 (1 − 2x2 ), for 0 < x < 1 and = 0, otherwise (elsewhere) then the c.d.f of X is F(x) =
Choose the correct option from the given alternative:
If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =
Choose the correct option from the given alternative:
Find expected value of and variance of X for the following p.m.f.
X | -2 | -1 | 0 | 1 | 2 |
P(x) | 0.3 | 0.3 | 0.1 | 0.05 | 0.25 |
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is positive
Solve the following problem :
A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.
The following is the c.d.f. of r.v. X:
X | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 | 1 |
Find p.m.f. of X.
i. P(–1 ≤ X ≤ 2)
ii. P(X ≤ 3 / X > 0).
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
*1 |
P (–1 ≤ X ≤ 2)
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
1 |
P (X ≤ 3/ X > 0)
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(x≤1)
Find the probability distribution of number of number of tails in three tosses of a coin
Find expected value and variance of X, the number on the uppermost face of a fair die.
70% of the members favour and 30% oppose a proposal in a meeting. The random variable X takes the value 0 if a member opposes the proposal and the value 1 if a member is in favour. Find E(X) and Var(X).
F(x) is c.d.f. of discrete r.v. X whose distribution is
Xi | – 2 | – 1 | 0 | 1 | 2 |
Pi | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
Then F(– 3) = _______ .
Choose the correct alternative :
X: is number obtained on upper most face when a fair die….thrown then E(X) = _______.
The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.
Fill in the blank :
If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______
If F(x) is distribution function of discrete r.v.X with p.m.f. P(x) = `k^4C_x` for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(–1) = _______
Fill in the blank :
E(x) is considered to be _______ of the probability distribution of x.
State whether the following is True or False :
If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.
State whether the following is True or False :
x | – 2 | – 1 | 0 | 1 | 2 |
P(X = x) | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Determine the value of k.
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | – 1 | 0 | 1 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
X | 0 | 1 | 2 | 3 | 4 | 5 |
P(X = x) | `(1)/(32)` | `(5)/(32)` | `(10)/(32)` | `(10)/(32)` | `(5)/(32)` | `(1)/(32)` |
Solve the following problem :
Let X∼B(n,p) If n = 10 and E(X)= 5, find p and Var(X).
Solve the following problem :
Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.
If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for" x = 1"," 2"," 3"," .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______
If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(("c")/x^3",", "for" x = 1"," 2"," 3","),(0",", "otherwise"):}` then E(X) = ______
Find the expected value and variance of r.v. X whose p.m.f. is given below.
X | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
The probability distribution of X is as follows:
X | 0 | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | k | 2k | 2k | k |
Find k and P[X < 2]
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.
If X is discrete random variable takes the values x1, x2, x3, … xn, then `sum_("i" = 1)^"n" "P"(x_"i")` = ______
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
P(X ≤ 4) = `square + square + square + square = square`
The probability distribution of X is as follows:
x | 0 | 1 | 2 | 3 | 4 |
P[X = x] | 0.1 | k | 2k | 2k | k |
Find
- k
- P[X < 2]
- P[X ≥ 3]
- P[1 ≤ X < 4]
- P(2)
Given below is the probability distribution of a discrete random variable x.
X | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | K | 0 | 2K | 5K | K | 3K |
Find K and hence find P(2 ≤ x ≤ 3)